
E4S: An Introduction to the Extreme-scale Scientific
Software Stack

Michael A. Heroux
Director of Software Technology, US Exascale Computing Project
Senior Scientist, Center for Computing Research, Sandia National Laboratories
Scientist in Residence, St. John’s University, MN

September 22, 2019

2

E4S Forum Agenda

E4S Overview

4

Software Technology Ecosystem

ST
Products

Source: ECP L4 teams; Non-ECP Developers; Standards Groups
Delivery: Apps directly; spack; vendor stack; facility stack

SDKs

Source: ECP SDK teams; Non-ECP Products (policy compliant,
spackified)

Delivery: Apps directly; spack install sdk; future: vendor/facility

E4S

Source: ECP E4S team; Non-ECP Products (all dependencies)
Delivery: spack install e4s; containers; CI Testing

Levels of Integration Product Source and Delivery

• Group similar products
• Make interoperable
• Assure policy compliant
• Include external products

• Build all SDKs
• Build complete stack
• Containerize binaries

• Standard workflow
• Existed before ECP

ECP ST Open Product Integration Architecture

ECP ST Individual Products

5

Extreme-scale Scientific Software Stack (E4S)

•E4S: A Spack-based distribution of ECP ST and
related and dependent software tested for
interoperability and portability to multiple
architectures

•Provides distinction between SDK usability /
general quality / community and deployment /
testing goals

•Will leverage and enhance SDK interoperability
thrust

•Oct: E4S 0.1 - 24 full, 24 partial release products
• Jan: E4S 0.2 - 37 full, 10 partial release products

e4s.io
Lead: Sameer Shende

(U Oregon)

6

Sample of E4S Release and Installed Packages

• Adios
• Bolt
• Caliper
• Darshan
• Gasnet
• GEOPM
• GlobalArrays
• Gotcha
• HDF5
• HPCToolkit
• Hypre
• Jupyter
• Kokkos
• Legion

• Libquo
• Magma
• MFEM
• MPICH
• OpenMPI
• PAPI
• Papyrus
• Parallel

netCDF
• ParaView
• PETSc/TAO
• Program

Database
Toolkit (PDT)

• Qthreads
• Raja
• SCR
• Spack
• Strumpack
• Sundials
• SuperLU
• Swift/T
• SZ
• Tasmanian
• TAU
• Trilinos
• VTKm
• Umpire

• UnifyCR
• Veloc
• xSDK
• Zfp

Packages installed using Spack

All ST products
will be released

through E4S

Exascale Computing
Project (ECP) Research,
Development & Delivery
(RD&D) Overview

8

US DOE Office of Science (SC) and National
Nuclear Security Administration (NNSA)

DOE Exascale Program: The Exascale Computing Initiative (ECI)

ECI
partners

Accelerate R&D, acquisition, and deployment to
deliver exascale computing capability to DOE
national labs by the early- to mid-2020s

ECI
mission

Delivery of an enduring and capable exascale
computing capability for use by a wide range
of applications of importance to DOE and the US

ECI
focus

Exascale
Computing

Project
(ECP)

Exascale system
procurement projects &

facilities
ALCF-3 (Aurora)
OLCF-5 (Frontier)

ASC ATS-4 (El Capitan)

Selected program
office application

development
(BER, BES,

NNSA)

Three Major Components of the ECI

9

ECP’s three technical areas have the necessary components to
meet national goals

Application
Development (AD)

Software
Technology (ST)

Hardware
and Integration (HI)

Performant mission and science applications @ scale
Aggressive RD&D

Project
Mission apps &

integrated S/W stack
Deployment to DOE

HPC Facilities
Hardware tech

advances

Integrated delivery of ECP
products on targeted systems at

leading DOE HPC facilities

6 US HPC vendors focused on
exascale node and system

design; application integration
and software deployment to

facilities

Deliver expanded and vertically
integrated software stack to

achieve full potential of exascale
computing

67 unique software products
spanning programming models
and run times, math libraries,

data and visualization

Develop and enhance the
predictive capability of

applications critical to the DOE

24 applications including
national security, to energy, earth

systems, economic security,
materials, and data

10

ECP software technologies overview

Programming
Models & Runtimes
•Enhance and get
ready for exascale the
widely used MPI and
OpenMP
programming models
(hybrid programming
models, deep
memory copies)

•Development of
performance
portability tools (e.g.
Kokkos and Raja)

•Support alternate
models for potential
benefits and risk
mitigation: PGAS
(UPC++/GASNet)
,task-based models
(Legion, PaRSEC)

•Libraries for deep
memory hierarchy
and power
management

10-8

10-4

100

104

 0 100 200 300 400 500 600 700 800 900
R

e
s
id

u
a
l

Iteration

PAPI SDE Recorder: Residual per Iteration (662-bus: 662 x 662 with 2,474 nonzeros)

CG
CGS

BICGSTAB

Development
Tools

• Continued,
multifaceted
capabilities in
portable, open-
source LLVM
compiler
ecosystem to
support expected
ECP
architectures,
including support
for F18

• Performance
analysis tools that
accommodate
new
architectures,
programming
models, e.g.,
PAPI, Tau

Math Libraries
•Linear algebra,
iterative linear
solvers, direct linear
solvers, integrators
and nonlinear
solvers,
optimization, FFTs,
etc

•Performance on new
node architectures;
extreme strong
scalability

•Advanced
algorithms for multi-
physics, multiscale
simulation and
outer-loop analysis

•Increasing quality,
interoperability,
complementarity of
math libraries

Data and
Visualization

• I/O via the HDF5
API

• Insightful,
memory-efficient
in-situ
visualization and
analysis – Data
reduction via
scientific data
compression

• Checkpoint
restart

Software
Ecosystem

•Develop features in
Spack necessary to
support all ST
products in E4S, and
the AD projects that
adopt it

•Development of
Spack stacks for
reproducible turnkey
deployment of large
collections of
software

•Optimization and
interoperability of
containers on HPC
systems

•Regular E4S
releases of the ST
software stack and
SDKs with regular
integration of new
ST products

NNSA ST
• Open source

NNSA Software
projects

• Projects that have
both mission role
and open science
role

• Major technical
areas: New
programming
abstractions,
math libraries,
data and viz
libraries

• Cover most ST
technology areas

• Subject to the
same planning,
reporting and
review processes

ECP Software Technology Leadership Team

Rajeev Thakur, Programming Models and Runtimes (2.3.1)
Rajeev is a senior computer scientist at ANL and most recently led the ECP Software Technology focus area. His research interests are in parallel
programming models, runtime systems, communication libraries, and scalable parallel I/O. He has been involved in the development of open source
software for large-scale HPC systems for over 20 years.

Jeff Vetter, Development Tools (2.3.2)
Jeff is a computer scientist at ORNL, where he leads the Future Technologies Group. He has been involved in research and development of
architectures and software for emerging technologies, such as heterogeneous computing and nonvolatile memory, for HPC for over 15 years.

Lois Curfman McInnes, Math Libraries (2.3.3)
Lois is a senior computational scientist in the Mathematics and Computer Science Division of ANL. She has over 20 years of experience in high-
performance numerical software, including development of PETSc and leadership of multi-institutional work toward sustainable scientific software
ecosystems.

Jim Ahrens, Data and Visualization (2.3.4)
Jim is a senior research scientist at the Los Alamos National Laboratory (LANL) and an expert in data science at scale. He started and actively
contributes to many open-source data science packages including ParaView and Cinema.

Mike Heroux, Software Technology Director
Mike has been involved in scientific software R&D for 30 years. His first 10 were at Cray in the LIBSCI and scalable apps groups. At Sandia he
started the Trilinos and Mantevo projects, is author of the HPCG benchmark for TOP500, and leads productivity and sustainability efforts for DOE.

Jonathan Carter, Software Technology Deputy Director
Jonathan has been involved in the support and development of HPC applications for chemistry, the procurement of HPC systems, and the evaluation
of novel computing hardware for over 25 years. He currently a senior manager in Computing Sciences at Berkeley Lab.

Rob Neely, NNSA ST (2.3.6)
Rob is an Associate Division Leader in the Center for Applied Scientific Computing (CASC) at LLNL, chair of the Weapons Simulation & Computing
Research Council, and lead for the Sierra Center of Excellence. His efforts span applications, CS research, platforms, and vendor interactions.

Todd Munson, Software Ecosystem and Delivery (2.3.5)
Todd is a computational scientist in the Math and Computer Science Division of ANL. He has nearly 20 years of experience in high-performance
numerical software, including development of PETSc/TAO and project management leadership in the ECP CODAR project.

12

We work on products applications need now and into the future

Example Products Engagement

MPI – Backbone of HPC apps Explore/develop MPICH and OpenMPI new features & standards.

OpenMP/OpenACC –On-node parallelism Explore/develop new features and standards.

Performance Portability Libraries Lightweight APIs for compile-time polymorphisms.

LLVM/Vendor compilers Injecting HPC features, testing/feedback to vendors.

Perf Tools - PAPI, TAU, HPCToolkit Explore/develop new features.

Math Libraries: BLAS, sparse solvers, etc. Scalable algorithms and software, critical enabling technologies.

IO: HDF5, MPI-IO, ADIOS Standard and next-gen IO, leveraging non-volatile storage.

Viz/Data Analysis ParaView-related product development, node concurrency.

Key themes:
• Exploration/development of new algorithms/software for emerging HPC capabilities:
• High-concurrency node architectures and advanced memory & storage technologies.
• Enabling access and use via standard APIs.
Software categories:
• The next generation of well-known and widely used HPC products (e.g., MPICH, OpenMPI, PETSc)
• Some lesser used but known products that address key new requirements (e.g., Kokkos, RAJA, Spack)
• New products that enable exploration of emerging HPC requirements (e.g., SICM, zfp, UnifyCR)

13

ECP ST
Projects
- WBS
- Name
- PIs
- PCs

WBS WBS Name CAM/PI PC
2.3 Software Technology Heroux, Mike, Carter, J.
2.3.1 Programming Models & Runtimes Thakur, Rajeev
2.3.1.01 PMR SDK Shende, Sameer Shende, Sameer
2.3.1.07 Exascale MPI (MPICH) Balaji, Pavan Bayyapu, Neelima
2.3.1.08 Legion McCormick, Pat McCormick, Pat
2.3.1.09 PaRSEC Bosilica, George Carr, Earl
2.3.1.14 Pagoda: UPC++/GASNet for Lightweight Communication and Global Address Space Support Baden, Scott Hargrove, Paul (and PI)
2.3.1.16 SICM Lang, Michael Vigil, Brittney
2.3.1.17 OMPI-X Bernholdt, David Alicia Grundhoffer
2.3.1.18 RAJA/Kokkos Trott, Christian Robert Trott, Christian
2.3.1.19 Argo: Low-level resource management for the OS and runtime Beckman, Pete Gupta, Rinku
2.3.2 Development Tools Vetter, Jeff
2.3.2.01 Development Tools Software Development Kit Miller, Barton Tim Haines
2.3.2.06 Exa-PAPI++: The Exascale Performance Application Programming Interface with Modern C++Dongarra, Jack Jagode, Heike
2.3.2.08 Extending HPCToolkit to Measure and Analyze Code Performance on Exascale Platforms Mellor-Crummey, John Mellor-Crummey, John
2.3.2.10 PROTEAS-TUNE Vetter, Jeff Glassbrook, Dick
2.3.2.11 SOLLVE: Scaling OpenMP with LLVm for Exascale Chapman, Barbara Kong, Martin
2.3.2.12 FLANG McCormick, Pat Perry-Holby, Alexis
2.3.3 Mathematical Libraries McInnes, Lois
2.3.3.01 Extreme-scale Scientific xSDK for ECP Yang, Ulrike Yang, Ulrike
2.3.3.06 Preparing PETSc/TAO for Exascale Smith, Barry Munson, Todd
2.3.3.07 STRUMPACK/SuperLU/FFTX: sparse direct solvers, preconditioners, and FFT libraries Li, Xiaoye Li, Xiaoye
2.3.3.12 Enabling Exascale Simulations with SUNDIALS and hypre Woodward, Carol Woodward, Carol
2.3.3.13 CLOVER: Computational Libraries Optimized Via Exascale Research Dongarra, Jack Carr, Earl
2.3.3.14 ALExa: Accelerated Libraries for Exascale/ForTrilinos Turner, John Alicia Grundhoffer
2.3.4 Data and Visualization Ahrens, James
2.3.4.01 Data and Visualization Software Development Kit Atkins, Chuck Atkins, Chuck
2.3.4.09 ADIOS Framework for Scientific Data on Exascale Systems Klasky, Scott Alicia Grundhoffer
2.3.4.10 DataLib: Data Libraries and Services Enabling Exascale Science Ross, Rob Ross, Rob
2.3.4.13 ECP/VTK-m Moreland, Kenneth Moreland, Kenneth
2.3.4.14 VeloC: Very Low Overhead Transparent Multilevel Checkpoint/Restart/Sz Cappello, Franck Ehling, Scott
2.3.4.15 ExaIO - Delivering Efficient Parallel I/O on Exascale Computing Systems with HDF5 and Unify Byna, Suren Bagha, Neelam
2.3.4.16 ALPINE: Algorithms and Infrastructure for In Situ Visualization and Analysis/ZFP Ahrens, James Turton, Terry
2.3.5 Software Ecosystem and Delivery Munson, Todd
2.3.5.01 Software Ecosystem and Delivery Software Development Kit Willenbring, James M Willenbring, James M
2.3.5.09 SW Packaging Technologies Gamblin, Todd Gamblin, Todd
2.3.6 NNSA ST Neely, Rob
2.3.6.01 LANL ATDM Mike Lang Vandenbusch, Tanya Marie
2.3.6.02 LLNL ATDM Becky Springmeyer Gamblin, Todd
2.3.6.03 SNL ATDM Jim Stewart Trujillo, Gabrielle

ECP ST
Stats
- 33 L4

projects
- 11 PI/PC

same
- 22 PI/PC

different

14

ECP ST Product Dictionary List – Actively managed
ADIOS
AML
Ascent
BLAS
C
C++
Caliper
Catalyst
CHAI
Cinema
CUDA
Darshan
DTK
Dyninst
E4S
FFT
FleCSI

Flux
Fortran
GASNet
Ginkgo
HDF5
HPCToolkit
hypre
Kokkos
KokkosKernels
LAPACK
Legion
libEnsemble
MarFS
MFEM
MPI
OpenACC
OpenCL

OpenMP
PAPI
Papyrus
Paraview
PaRSEC
PETSc/TAO
PnetCDF
PowerStack
RAJA
MPI-IO
ScaLAPACK
SCR
SICM
Spack
SPOT
STRUMPACK

SUNDIALS
SuperLU
SYCL
SZ
TASMANIAN
TAU
Trilinos
UMap
Umpire
Unify
UPC++
VeloC
Visit
VTK-m
xSDK
ZFP

Widely-recognized product
names. Enables mapping
between AD & Facilities
dependencies and ST
development efforts.

• MPI – MPICH, OpenMP
• C++/C/Fortran - LLVM
• Fortran – Flang
• hypre – hypre

• Actively managed at L2
level.

Product URL Description Deployment Scope Technical Area POC
1. ADIOS https://github.com/or

nladios/ADIOS2
I/O and data management library for
storage I/O, in-memory code coupling and
online data analysis and visualization
workflows.

Broad Data & Viz Scott Klasky

2. AID Advanced Infrastructure for Debugging
(AID) - a toolkit of debugging and
correctness tools for extreme scale and
GPU architectures

Experimental Tools Dong Ahn

AID: STAT https://github.com/L
LNL/stat

Stack Trace Analysis Tool - lightweight
debugging at extreme scale

Broad Tools

AID: Archer https://github.com/P
RUNERS/archer

Data race detection tool for OpenMP
applications

Broad Tools

AID: FLiT https://github.com/P
RUNERS/FLiT

Quickly detect discrepancies in floating
point computation across hardware,
compilers, libraries and software

Moderate Tools

AID: ReMPI https://github.com/P
RUNERS/ReMPI

A lightweight record-and-replay tool for
MPI+OpenMP applications

Moderate Tools

AID: FPChecker https://github.com/L
LNL/FPChecker

Floating point exception trapping for
NVIDIA GPUs

Experimental Tools

https://github.com/ornladios/ADIOS2
https://confluence.exascaleproject.org/display/~klasky@ornl.gov
https://confluence.exascaleproject.org/display/~ahn1@llnl.gov
https://github.com/LLNL/stat
https://github.com/PRUNERS/archer
https://github.com/PRUNERS/FLiT
https://github.com/PRUNERS/ReMPI
https://github.com/LLNL/FPChecker

16

Partial List of Jira Dependency Issues

17

Jira Dependency Issue Type

• Official ST and AD Product lists enable
rigorous dependency management.

• New Jira Dependency issue type.
• Explicit dependency connections between

AD/CD/ST products

Delivering a modular,
interoperable, and
deployable software
stack

19

ECP ST Planning Process: Hierarchical, three-phase, cyclical

FY20–23 Baseline Plan
High level Definitions

• Q2 FY19 start
• FY20 Base plan
• FY21–23 planning

packages

Baseline

FY Refine Baseline Plan
As Needed

Basic activity definitions

• 6 months prior to FY
• 4–6 P6 Activities/year
• Each activity:

• % annual budget
• Baseline start/end
• High level description

Annual Refinement

Detailed Plan
Complete activity definitions

• 8 weeks prior to start
• High-fidelity description
• Execution strategy
• Completion criteria
• Personnel details

Per Activity

Two-level
Change Control

Changes to Cost, Scope,
and Schedule

Minor Major

Lightweight
Review in

Jira, L3 and
L2 leads

Change
Control
Board

Review, ECP
leadership

Variance Recorded in Jira
Proceed with Execution

20

KPP-3 Definition

KPP ID Description of Scope Threshold KPP Objective KPP
Verification Action/Evidence

KPP-1
Performance of scientific and national
security applications relative to today’s
performance

50% of selected applications achieve
Figure of merit* improvement ≥50

100% of selected applications achieve
Figure of merit improvement stretch
goal

Independent assessment of measured
results and report that threshold goal is
met

KPP-2 Broaden the reach of exascale science and
mission capability

50% of selected applications can
execute their challenge problem*

100% of selected applications can
execute their challenge problem stretch
goal

Independent assessment of mission
application readiness

KPP-3 Productive and Sustainable
Software Ecosystem

Software teams meet 50% of
their weighted impact goals*

Software teams meet 100% of
their weighted impact stretch
goals

Independent assessment
verifying threshold goal is met

KPP-4 Enrich the HPC Hardware Ecosystem Vendors meet 80% of all the
PathForward milestones

Vendors meet 100% of all the
PathForward milestones

Independent assessment of the impact and
timeliness of PathForward milestones

21

KPP-3: Focus on capability integration

• Capability: Any significant product functionality, including existing features adapted to the pre-
exascale and exascale environments, that can be integrated into a client environment.

• Capability Integration: Complete, sustainable integration of a significant product capability into a
client environment in a pre-exascale environment (tentative score) and in an exascale environment
(confirmed score).

• Product: Capabilities are integrated into primary products chosen from a product dictionary.

• Primary products examples:
– MPI is commonly known by users. MPICH and OpenMPI both provide implementations of that product.
– Fortran is a product. Flang is a particular Fortran product. LLVM is a backend for some Fortran compilers.
– FFT is a product. FFTX, FFT-ECP provide FFT capabilities through interchangeable interfaces.
– C++ is a product. Clacc provides capabilities for Clang, as does LLVM.

• Details: See Confluence page export.

22

Delivering a Modular, Interoperable, and Deployable Software Stack

Objectives
• Lower barrier to use ST products

• Lower barrier to enable Facilities to install all
or parts

• Enable interoperability between ST products

• Enable uniform APIs where possible

• Improve KPP-3 success

Challenges
• Large diverse group of ST products

• Different project management styles

• Lack of initial drivers for integration

23

A flexible package manager for HPC
• Inspired by Homebrew, Nix, some others
• Support scientific stacks with multiple languages
• Flexibility:

– Build packages many different ways
– Change compilers and flags in builds
– Swap implementations of libraries (MPI, BLAS, etc.)

• Run on laptops, Linux clusters, and the largest supercomputers in
the world

Over 150,000 downloads in the past year

Over 300 contributors
from labs, academia, industry

Over 2,800 software packages

Spack is used worldwide!Spack @spackpmgithub.com/spackhttps://spack.io

$ spack install mpileaks@3.3
$ spack install mpileaks@3.3 %gcc@4.7.3 +threads
$ spack install mpileaks@3.3 cppflags="-O3 –g3"
$ spack install mpileaks@3.3 target=haswell
$ spack install mpileaks@3.3 ^mpich@3.2

$ git clone https://github.com/spack/spack
$. spack/share/spack/setup-env.sh
$ spack install hdf5

Easy installation

Easy customization

https://github.com/LLNL/spack.git

24

Software Development Kits are a key delivery vehicle for ECP
•A collection of related software products (called packages) where coordination

across package teams will improve usability and practices and foster community
growth among teams that develop similar and complementary capabilities

•Attributes
– Domain scope: Collection makes functional sense
– Interaction model: How packages interact; compatible, complementary, interoperable
– Community policies: Value statements; serve as criteria for membership
– Meta-infrastructure: Invokes build of all packages (Spack), shared test suites
– Coordinated plans: Inter-package planning. Augments autonomous package planning
– Community outreach: Coordinated, combined tutorials, documentation, best practices

•Overarching goal: Unity in essentials, otherwise diversity

ECP ST SDKs: Grouping Similar Products for collaboration & usability
Prog Models & Runtimes Core Math Libraries (xSDK)
Tools & Technologies Viz Analysis and Reduction
Compilers & Support Data mgmt., I/O services & Checkpoint/Restart

25

SDK “Horizontal” Grouping:
Key Quality Improvement
Driver

Horizonal (vs Vertical) Coupling
–Common substrate
–Similar function and purpose
•e.g., compiler frameworks, math libraries

–Potential benefit from common Community Policies
•Best practices in software design and development and customer support

–Used together, but not in the long vertical dependency chain sense
–Support for (and design of) common interfaces
•Commonly an aspiration, not yet reality

PETSc Trilinos

SuperLU Version X SuperLU Version Y

Horizontal grouping:
• Assures X=Y.
• Protects against regressions.
• Transforms code coupling from

heroic effort to turnkey.

26

There are 5 L4 projects to define and/or enhance SDKs

• Each L3 area has an L4 project devoted to
SDK definition and coordination across the
portfolio

• Software ecosystem L4 project focuses on
packaging
– Spack
– Containers

• Strong coordination with HI Software
Deployment projects

•Drives milestone-based planning

WBS Areas

ECP ST SDKs will span all technology areas

zfp

VisIt

ASCENT

Cinema

Catalyst

VTK-m

SZ

ParaView

Visualization Analysis
and Reduction (9)

ROVER

xSDK (16)

MAGMA

DTK

Tasmanian

TuckerMPI

SUNDIALS

PETSc/TAO

libEnsemble

STRUMPACK

SuperLU

ForTrilinos

SLATE

MFEM

Kokkoskernels

Trilinos

hypre

FleSCI

PMR Core (17)

UPC++

MPICH

Open MPI

Umpire

AML

RAJA

CHAI

PaRSEC*

DARMA

GASNet-EX

Qthreads

BOLT

SICM

Legion

Kokkos (support)

QUO

Papyrus

Tools and
Technology (11)

PAPI

Program Database Toolkit

Search (random forests)

Siboka

C2C

Sonar

Dyninst Binary Tools

Gotcha

Caliper

TAU

HPCToolkit

Compilers
and Support (7)

OpenMP V & V

Flang/LLVM Fortran comp

LLVM

CHiLL autotuning comp

LLVM openMP comp

openarc

Kitsune

Data mgmt, I/O Services,
Checkpoint restart (12)

Parallel netCDF

ADIOS

Darshan

UnifyCR

VeloC

IOSS

HXHIM

ROMIO

Mercury (Mochi suite)

HDF5

SCR

FAODEL

Ecosystem/E4S
at-large (12)

BEE

FSEFI

Kitten Lightweight Kernel

COOLR

NRM

ArgoContainers

Spack

MarFS

GUFI

Intel GEOPM

mpiFileUtils

TriBITS

Tools

PMR

Data and Vis
Ecosystems and delivery

Math Libraries Legend

Motivation: Properly chosen cross-team interactions will build relationships that support interoperability, usability,
sustainability, quality, and productivity within ECP ST.
Action Plan: Identify product groupings where coordination across development teams will improve usability and
practices, and foster community growth among teams that develop similar and complementary capabilities.

28

SDK Summary
• SDKs will help reduce complexity of delivery:

– Hierarchical build targets.
– Distribution of software integration responsibilities.

• New Effort: Started in April 2018, fully established in August 2018.

• Extending the SDK approach to all ECP ST domains.
– SDKs create a horizontal coupling of software products, teams.
– Create opportunities for better, faster, cheaper – pick all three.

• First concrete effort: Spack target to build all packages in an SDK.
– Decide on good groupings.
– Not necessarily trivial: Version compatibility issues, Coordination of common dependencies.

• Longer term:
– Establish community policies, enhance best practices sharing.
– Provide a mechanism for shared infrastructure, testing, training, etc.
– Enable community expansion beyond ECP.

29

E4S/Software

• Regular additions of software
technologies, integration testing,
and releases of E4S

• Certified Spack recipes and
binaries for software
technologies

• Currently includes 37 software
technologies

• Broad adoption of reliable,
performant, exascale-ready
software

Packaging Tech/Facilities

• Turnkey deployment of large
collections of software
technologies at facilities

• Coordinate with and leverage
facility personnel and resources,
such a continuous integration
capabilities

• Spack recipes for over 2,800
software packages

• Broad deployment of exascale-
ready software technologies

Packaging Tech/Applications

• Optimize and improve
interoperability of container
technologies

• Enable entire application to be
packaged into reproducible
container images

• Accelerate application
development and deployment
workflows

ST works with HI and Facilities to produce a stack, build, and container infrastructure

30

Continuous Integration (CI) is critical for delivery of high-quality SW
Fundamental value: Minimize time between fault injection & detection

ST
Delivers

HI
Deploys

• Focus on production-quality software processes
• Provide SDKs as a natural unit of software groupings
• Allow for custom "turnkey" builds via Spack
• Optionally - provide containers of products and SDKs
• Regular software releases made available to Facilities and open

source community

• Work with ST/Facilities on a consistent deployment model for ST
products

• Coordinate a support model for ST products
• Provide linkages to Facility "site stacks" and vendor offerings
• Build common infrastructure for testing and deployment
• Training, knowledge transfer, promotion of ST products

31

Continuous Integration (CI) is critical for delivery of high-quality SW
Fundamental value: Minimize time between fault injection & detection

ECP Goal: To establish a cross-site Continuous Integration testing infrastructure that:
• Provides for account authentication and access to CI test resources across multiple sites
• Provides unique and targeted HPC test resources to support software development teams
• Establishes a standard process across the DOE sites for software development testing

• Allows for the verification of development efforts through automated building and testing across
sites to better identify errors and improve code efficiency

• Continuous Integration/Continuous Delivery pipelines are enabled through a combination of the web
application and project configuration files and are executed by selected runners

Preparing for Exascale
Platforms

33

LLNL
IBM/NVIDIA

Department of Energy (DOE) Roadmap to Exascale Systems
An impressive, productive lineup of accelerated node systems supporting DOE’s mission

ANL
IBM BG/Q

ORNL
Cray/AMD/NVIDIA

LBNL
Cray/AMD/NVIDIA

LANL/SNL
TBD

ANL
Intel/Cray

ORNL
TBD

LLNL
TBD

LANL/SNL
Cray/Intel Xeon/KNL

2012 2016 2018 2020 2021-2023

ORNL
IBM/NVIDIA

LLNL
IBM BG/Q

Sequoia (10)

Cori (12)

Trinity (6)

Theta (24)Mira (21)

Titan (9) Summit (1)

NERSC-9Perlmutter

Aurora

ANL
Cray/Intel KNL

LBNL
Cray/Intel Xeon/KNL

First U.S. Exascale Systems

Sierra (2)

Pre-Exascale Systems [Aggregate Linpack (Rmax) = 323 PF!]

34

Hardware realities are forcing new thinking of algorithmic
implementations and the move to new algorithms

New Algorithms

• Adopting Monte Carlo vs. Deterministic
approaches

• Exchanging on-the-fly recomputation vs.
data table lookup (e.g. neutron cross
sections)

• Moving to higher-order methods (e.g. CFD)

• Particle algorithms that favor collecting
similar events together rather than
parallelism though individual
histories

Algorithmic Implementations
• Reduced communication/data movement

– Sparse linear algebra, Linpack, etc.
• Much greater locality awareness

– Likely must be exposed by
programming model

• Much higher cost of global synchronization
– Favor maxim asynchrony where physics

allows
• Value to mixed precision where possible

– Huge role in AI, harder to pin down for
PDEs

• Fault resilience?
– Likely handled outside of applications

35

Exascale Application Development Challenges Overall

1) Porting to accelerator-based architectures

2) Exposing additional parallelism

3) Coupling codes to create new multiphysics capability

4) Adopting new mathematical approaches

5) Algorithmic or model improvements

6) Leveraging optimized libraries

36

Scope and objectives
• Exascale applications rely heavily on MPI collectives to efficiently implement group

communication.
• MPI collectives can be more efficiently performed with knowledge of both the application

and machine topology.
• Design and implement topology-aware support for applications and machine topologies for

use at exascale.

Project accomplishment

• We have prototyped a suite of new collective algorithms intended to perform well on large
multicore machines, as well as network topologies such as a dragonfly.

• We have prototyped neighborhood collectives using sub-communicators to exploit the
virtual topology of many ECP applications, i.e. nearest neighbor exchange.

• We have designed and prototyped a flexible framework for selecting the best collective
algorithm for a given set of parameters.

Impact

• It is imperative for communication libraries such as Exascale MPI to efficiently perform
collective operations on both physical and virtual topologies. Many ECP applications rely
on MPI collectives for performance and efficiency.

Topology-Aware Collective Algorithms and Selection

Topology-Aware Collectives ECP WBS 2.3.1.07 STPM09

PI Pavan Balaji, ANL

Software K-ary, K-nomial, Recursive Exchange collective algorithms: http://www.mpich.org/static/downloads/3.3.1/mpich-3.3.1.tar.gz
Intelligent Collective Selection: https://github.com/pmodels/mpich/pull/3897
Message-combining Optimizations for Neighborhood Collectives: https://github.com/pmodels/mpich/pull/3892
Sub-communicator Optimizations for Neighborhood Collectives: https://github.com/pmodels/mpich/pull/3883

Deliverables MPI_Neighbor_ allgatherk-ary tree (k=3)

Barrier Bcast Allreduce Reduce

ppn=2 ppn=4 ppn=8 ppn=16 ppn=64processes per node level

datatype level

message size level

collective name level

comm_size=2 comm_size=8 comm_size=16communicator size level

operation level

Arch_1 Arch2

Fabric_1 Fabric_2 Fabric_3fabric level

architecture level

http://www.mpich.org/static/downloads/3.3.1/mpich-3.3.1.tar.gz
https://github.com/pmodels/mpich/pull/3897
https://github.com/pmodels/mpich/pull/3892
https://github.com/pmodels/mpich/pull/3883

37

Scope and objectives
• OpenMP, the primary programming model for on-node currency in ECP

applications
• Improve the performance and functionality of LLVM's OpenMP

implementation, especially on GPUs
• Improve the interaction between OpenMP and loop-nest optimizations, and

the ability to express loop-nest optimizations in OpenMP
• Implement new OpenMP features in LLVM, specifically features for mapping

complex data structures in accelerators

Project accomplishment
• Implemented improved general infrastructure allowing for the optimization of

OpenMP target regions, with specific optimization enablement for GPUs.
• Designed and prototyped new OpenMP loop-optimization pragmas.

Demonstrated that these pragmas can replace complex source-level
transformations yielding performance and productivity improvements.

• Implemented initial support for OpenMP user-defined mapping directives.

Impact
• OpenMP is the de facto standard multithreading even outside ECP. Any

impact within ECP translates into impact outside of it
• Most ECP applications rely on OpenMP for intranode and MPI for internode

programming. Improvements in OpenMP performance on GPUs will translate
directly to performance on exascale architectures

• OpenMP features implemented in LLVM are often incorporated into LLVM-
based vendor toolchains

Cool image

Enhanced LLVM OpenMP compiler ECP WBS SOLLVE
PI Barbara Chapman, BNL

Members BNL,ANL, Rice, ORNL, LLNL

Publications • Johannes Doerfert, Jose Manuel Monsalve Diaz and Hal Finkel. “The TRegion Interface and Compiler Optimizations For OpenMP Target Regions”,
IWOMP 2019.

• Michael Kruse and Hal Finkel. “Design and Use of Loop-Transformation Pragmas”, IWOMP 2019.
Project Report Uploaded on Jira (see report for code under review and repository links)

Deliverables

OpenMP for GPU "target
region" optimizations.
Evaluation of four Rodinia
v3.1 on a NVIDIA K40 and
V100. Speedup vs. Input size.

38

• PAPI support for NVML, CUPTI, NVLINK performance
events, and power consumption management on GPUs.

• Added PAPI support for TESLA V100 GPUs and
NVLINK.

• Increase options and info for multi-objective optimization;
e.g. reducing energy usage when GPUs are not the
speed bottleneck, or a speedy result is not paramount.

• Production interface of PAPI to CUPTI and NVML, with
well-documented example code, proving the availability
and efficacy of the controls in a standardized way.

• We demonstrate PAPI NVIDIA GPU power reading and
control, and the use of performance counters across
multiple GPUs

• PAPI “nvml”: Monitoring of GPU power consumption, fan
speed, temperature, and power capping support: allows
developers to change run profiles to reduce energy cost.

• PAPI “cuda”: Monitoring of GPU and NVLINK
performance counters aids developers in producing more
efficient code by profiling the utilization of the latest GPU
resources and diagnosing performance bottlenecks.

Fulfillment of NVIDIA GPU Performance Counter
and Power Management Support

ECP WBS Exa-PAPI

PI Dongarra, UTK

Members Heike Jagode (Co-PI)
Anthony Danalis (Co-PI)
Tony Castaldo

Deliverables git clone https://bitbucket.org/icl/papi.git. In papi/src/components/nvml/tests: nvmlcap_plot.cu, nvml_power_limiting_test.cu. In
papi/src/components/cuda/tests: simpleMultiGPU.cu. Corresponding Makefile in each directory, commentary in code.

Power Reading and Capping on TESLA V100 GPUs

Project AccomplishmentImpact

Scope and Objectives

https://bitbucket.org/icl/papi.git

39

Scope and objectives
• Sparse direct solvers and factorization based

preconditioners. This milestone focuses on dense matrix
compression for use in the preconditioner

• Need to improve efficiency and rate of compression for
frontal matrices (fill-in in multifrontal sparse factorization)

• Accurate and fast compression improves preconditioning
for numerically hard problems

Project accomplishment
• HODLR + butterfly in ButterflyPACK (Fortran/C), and

integrated in STRUMPACK (C++) preconditioner
• Evaluation on MFEM indefinite Maxwell test code,

typically solved with direct solvers
• Observed much reduced memory usage compared to

direct solver: 20x compression rate on largest fronts using
butterfly

Impact
• Asymptotically reduce memory and computation in sparse

solvers. This allows ECP and other users, (also through
MFEM or PETSc) to solve larger problems, faster

• Provide robust, purely algebraic, parallel solvers and
preconditioners for numerically challenging ECP
applications, for instance, high frequency Helmholtz

Hierarchical Off-Diagonal Low-Rank Matrix
Compression in the STRUMPACK Preconditioner

HODLR and Butterfly data-sparse formats
Off diagonal blocks
are low-rank/butterfly
compressed.
Butterfly multi-level
low-rank compression
is based on ideas
from FFT.

ECP WBS 2.3.3.07 Sparse solvers and
preconditioners

PI X. Sherry Li, LBNL
Members Pieter Ghysels, Yang Liu: LBNL

Deliverables l https://github.com/liuyangzhuan/ButterflyPACK
l https://github.com/pghysels/STRUMPACK
l Summit (OLCF) was used for the evaluation

https://github.com/liuyangzhuan/ButterflyPACK
https://github.com/pghysels/STRUMPACK

401

Scope and objectives

• MAGMA-sparse release containing implementations for parallel

incomplete factorizations (ParILU) for CPU & GPU architectures.

• MAGMA-sparse release containing implementations for parallel

incomplete factorizations based on thresholding (ParILUT) for

CPU & GPU architectures.

• MAGMA-sparse release containing implementations for parallel

sparse triangular solves for CPU & GPU architectures.

Current efforts

• Exploring the use of faster preconditioner pattern generation via

Machine Learning.

• Looking for ECP application projects amenable to threshold-ILU

preconditioning.

• Integrating ParILU / ParILUT into the Ginkgo software ecosystem

featuring Continuous Benchmarking (CB).

Impact

• Cross-Platform implementations for parallel ILU preconditioning,

parallel threshold ILU preconditioning, and sparse triangular

solves available in MAGMA-sparse part of the xSDK software

ecosystem.

• Presented the performance results of the first threshold ILU

preconditioner (ParILUT) at the IPDPS 2019 conference and the

JLESC 2019 meeting in Knoxville.

Performance results for cross-platform ParILUT

Cross-platform implementation for parallel
incomplete factorizations

ECP WBS STMS11-PEEKS

PI Dongarra (UTK)

Boman (SNL)

Members Hoemmen (SNL)

Anzt, Yamazaki (UTK)

Deliverables The ParILU and ParILUT preconditioners for architectures supporting OMP or CUDA are available in the MAGMA repository:

https://bitbucket.org/icl/magma/src

Performance results on the SUMMIT architecture were presented at the IPDPS conference in Rio de Janeiro, Brazil:

https://hartwiganzt.github.io/slides/IPDPS_ParILUT.pdf

ani7 apa1 apa2 cg10 cg11 jac0 jac9 maj thm1 thm2 tdM tTC tmt op60 op120 tor ven
100

101

102

103

S
p
e
e
d
u
p
 o

ve
r

S
u
p
e
rL

U
 I
L
U

T
 o

n
 K

N
L

ParILUT-OMP on KNL
ParILUT-GPU on K40
ParILUT-GPU on P100
ParILUT-GPU on V100

41

Scope and objectives
• Describe variables in ADIOS using VTK XML format
• Develop the VTK::IOADIOS2 module to enable seamless

visualization in Paraview
• Support ECP products:

• MEUMAPPS (ExaAM) for ImageData
• MFEM (CEED) and UnstructuredGrid

Project accomplishment
• MEUMAPPS (ExaAM) and MFEM (CEED) users can now

visualize their data by adding simple XML descriptors either during
the data generation or after

• The VTK::IOADIOS2 provides a reusable architecture that
expands these capabilities and take advantage or the rich VTK
ecosystem

Impact
• Applications using ADIOS can visualize their data in parallel using

a simple string descriptor base on the well-documented VTK File
data models

• Leverage current scalable I/O capabilities in ADIOS with VTK (and
potentially VTK-m) for insitu visualization using a pluggable
ecosystem delivered by the ECP data analysis and visualization
software stack.

Visualization of ADIOS BP files
Seamless visualization in
Paraview using the
VTK::IOADIOS2 module
and
VTK XML description in
BP Files

Data Model Support in ADIOS for
Visualization and Analysis

ECP WBS 2.3.4.09 STDM11-ADIOS2
PI Scott Klasky, ORNL

Members ORNL, Kitware, Georgia Tech, Rutgers, LBNL

Deliverables VTK::IOADIOS2 module merge request: https://gitlab.kitware.com/vtk/vtk/merge_requests/5613

42

ECP ST Review Focus
• Describe your overall approach followed by specific activities in preparation for exascale platforms.

– Include a description of your overall strategy for your L4 project.
– Include description of pre-exascale environments you are using.
– Include status and any results from pre-exascale environments (GPU porting, use of Summit) that illustrate your strategy.
– Include discussion of your major challenges.

• Describe your overall approach and describe the status of your client integration efforts.
– Include a description of your overall strategy for your L4 project.
– Include specific client interactions that illustrate your strategy.
– Include recent integration progress.
– Include discussion of your major challenges.

Detailed instructions for each L3 area: PMR

• Perlmutter, Aurora and Frontier represent very different node programming environments. As appropriate, how is your
project addressing this challenge, including node performance, performance portability, performance of MPI+X and
preparation for further heterogeneity?

• What is the path for your capabilities to realize sustainability in the software ecosystem?

• How is your work impacting vendor capabilities?

E4S Collaborations

44

How E4S and OpenHPC Work Together

44

CommunityGNU

Linux

File system

Upstream
source

Communities

Res Manager

Upstream
source

Communities
Upstream

source
Communities

Upstream
Communities

Integrates
and tests
HPC stack

Base
HPC

Stack

Community
Stack

E4S Stack

•OpenHPC
• Provides installation and base

components for installing and
running cluster to supercomputer

• Provides generic binaries for all
systems (working on targeted
builds)

•E4S
• Built from scratch for your system
• Focus on upper layers of system

software stack (libraries, runtimes,
etc.)

• Targeted for capability-class machines

Spack, MPI, RMs,
base installation

Builds for exascale machines,
Scaled and additional

submissions to TSC

45

NSF Collaborations

https://oaciss.uoregon.edu/NSFDOE19/agenda.html

46

Extending Collaborations
•E4S/SDK collaborations make sense with:
– HPC open source development projects:
•deal.II (NSF math library),
•PHIST (DLR Germany library).

– Application teams in search of open source software foundation:
•NSF science teams.
•NOAA, others.

– Commercial open source packagers/distributors
•OpenHPC.
•HPC systems vendors.

– HPC systems facilities:
•SDSC, TACC, others.

47

E4S: Building on top of previous efforts

•E4S did not emerge from nothing.

•Leveraging the work of many others.

•HPC Linux: Work done at U of Oregon, and at ParaTools.

• IDEAS-Classic: xSDK – the original SDK continuing under ECP.

•Spack – Pre-dates E4S.

E4S Wrap Up

49

Software Technology Ecosystem

ST
Products

Source: ECP L4 teams; Non-ECP Developers; Standards Groups
Delivery: Apps directly; spack; vendor stack; facility stack

SDKs

Source: ECP SDK teams; Non-ECP Products (policy compliant,
spackified)

Delivery: Apps directly; spack install sdk; future: vendor/facility

E4S

Source: ECP E4S team; Non-ECP Products (all dependencies)
Delivery: spack install e4s; containers; CI Testing

Levels of Integration Product Source and Delivery

• Group similar products
• Make interoperable
• Assure policy compliant
• Include external products

• Build all SDKs
• Build complete stack
• Containerize binaries

• Standard workflow
• Existed before ECP

ECP ST Open Product Integration Architecture

ECP ST Individual Products

50

E4S Basics

What E4S is
• Extensible, open architecture software ecosystem

accepting contributions from US and international teams.

• Framework for collaborative open-source product
integration.

• A full collection if compatible software capabilities and

• A manifest of a la carte selectable software capabilities.

• Vehicle for delivering high-quality reusable software
products in collaboration with others.

• The conduit for future leading edge HPC software
targeting scalable next-generation computing platforms.

• A hierarchical software framework to enhance (via SDKs)
software interoperability and quality expectations.

What E4S is not

• A closed system taking contributions only from DOE
software development teams.

• A monolithic, take-it-or-leave-it software behemoth.

• A commercial product.

• A simple packaging of existing software.

51

Final Remarks
• Software Development Kits (SDKs) provide a new software aggregation mechanism:

– Do not significantly increase the number of software products in the HPC ecosystem.
– Provide intermediate build, install and test targets for E4S (reducing complexity).
– Enable development teams to improve and standardize look-and-feel, best practices, policies.
– Improve interoperability, interchangeability of similar products.
– Fosters communities of developers in a cooperative/competitive environment.
– Provides integration point for SDK-compatible, non-ECP products.

• The Extreme-scale Scientific Software Stack (E4S) provides a complete HPC software stack:
– Does not significantly increase the number of software products in the HPC ecosystem.
– Provides a coordinated approach to building, installing and testing HPC software.
– Tests some products with a subset of configurations on a subset of platforms.
– Improves stability of the ST stack so that any subset is more stable.
– Provides a complete software stack, including non-ECP products.

• The SDK/E4S architecture is open:
– Enables light-weight coordinated collaboration among open source software teams.
– ECP seeks collaboration: libraries/tools and SDKs, facilities and E4S.

