Data Management and Visualization Approaches for the U.S. Exascale Computing Project

Approved for public release

James Ahrens

Data and Visualization L3 Lead

Chuck Atkins, Scott Klasky, Franck Capello, Rob Ross, Ken Moreland FY2020 Data and Visualization L4 Leads

IEEE Cluster / Workshop First Extreme-scale Scientific Software Stack Forum (E4S Forum)

Albuquerque, New Mexico September 25, 2019

LA-UR-19-29552

Data and visualization area summary

Vision	Supporting achieving exascale by addressing exascale data and visualization challenges		
Challenges	Exascale system concurrency is expected to grow by five or six orders of magnitude, yet system memory and I/O bandwidth/persistent capacity are only expected to grow by one and two orders of magnitude		
Mission	Deliver exascale-ready storage, data services and in situ visualization solutions for applications		
Objective	Produce data and visualization capabilities, integrate these capabilities into ECP applications, demonstrate solutions, deliver software as part of SDK		
Starting Point	Existing packages including storage tools such as ADIOS, MPI-IO, HDF5, services such as SCR for checkpoint restart, and post-processing visualization tools such as ParaView and Visit		
Portfolio Goals	Storage	 Deliver via HDF5 API, focus on burst buffer and backends Includes top DOE HPC storage teams - ADIOS, MPI-IO, HDF5, PnetCDF 	
	Services	Deliver data services (What not how) such as scientific data compression (ZFP, SZ), checkpoint restart (VeloC), storage performance tracking (Darshan)	
	Visualization	Deliver new exascale-oriented in situ visualization and analysis workflow via ALPINE, Vtk-m and Cinema products	

Challenge: Processor to memory/storage latency gap (on node)

3

Challenge: Processor to memory/storage bandwidth gap (on supercomputer) Example Summit supercomputer – slides courtesy of K. Moreland Computation 1400 PB/s

Node Memory 3.4 PB/s

Computation 1400 PB/s

Computation 1400 PB/s

Summary of area

 Challenge: Processor to Memory/Storage Gaps

- Latency Gap
- Bandwidth/Capability Gap
- Advantage: Lots of compute available
- Services requested:
 - Fault tolerance
 - Data storage
 - Visual analysis

Overcome gaps via:	Specific approaches	Product highlight
<u>Abstract/virtual</u> interface to hide	Messaging instead of communicating through filesystem	ADIOS
gap via messaging, caching and asynchrony	Add a layer of cache – burst buffer	PnetCDF, HDF5, UnifyFS
	Asynchronous interaction between processors and storage	VeloC
<u>Prioritize and</u> <u>measure</u> <u>functionality</u>	Identify and evaluate I/O patterns, choose frontend API, add ADIOS, MPI-IO, pnetCDF backends, measure, compare	Darshan, HDF5, ADIOS, PnetCDF, MPI-IO
Data reduction and	Compression	SZ, ZFP
transformation	In situ analysis - Run on processors	VTK-m
	In situ analysis – Batch algorithms on processors	ALPINE
	Post-processing analysis – Exploratory	Cinema

ECP applications target national problems

Energy security Economic security Scientific discovery Earth system Healt	alth care
Turbine wind plant efficiency High-efficiency low-emission combustion engine and gas turbine design for extreme environments of nuclear fission and fusion reactorsAdditive manufacturing of qualifiable metal parts Reliable and efficient planning of the power grid Seismic hazard risk assessment Urban planningFind, predict, and control materials and properties Cosmological probe of the standard model of particle physics Validate fundamental laws of natureAccurate regional and control materials and propertiesAccurate regional and control materials and propertiesDesign and commercialization of Small Modular ReactorsSeismic hazard risk assessment Urban planningFind, predict, and control materials and prope of the standard model of harticle physics Validate fundamental laws of natureAccurate regional and commodelsAccurate regional and traited control materials and prope of the standard model of harticle physicsDesign and commercialization of Small Modular ReactorsSeismic hazard risk assessment urban planningDemystify origin of chemical elements Light source- enabled analysis of protein and molecular structure and designAccurate regional and trait assessments in Earth system modelsAccurate regional and trait assessments in Earth system of natureSubsurface use for carbon capture, petroleum extraction, waste disposalAdditive model of magnetically confined fusion plasmasAccurate regional and control modelsAccurate regional tandard model of magnetically confined fusion plasmas <td>Celerate translate r research</td>	Celerate translate r research

Summary of area

 Challenge: Processor to Memory/Storage Gaps

- Latency Gap
- Bandwidth/Capability Gap
- Advantage: Lots of compute available
- Services requested:
 - Fault tolerance
 - Data storage
 - Visual analysis

Overcome gaps via:	Specific approaches	Product highlight
<u>Abstract/virtual</u> interface to hide	Messaging instead of communicating through filesystem	ADIOS
gap via messaging, caching and asynchrony	Add a layer of cache – burst buffer	PnetCDF, HDF5, UnifyFS
	Asynchronous interaction between processors and storage	VeloC
Prioritize and measure functionality	Identify and evaluate I/O patterns, choose frontend API, add ADIOS, MPI-IO, pnetCDF backends, measure, compare	Darshan, HDF5, ADIOS, PnetCDF, MPI-IO
Data reduction and transformation	Compression	SZ, ZFP
	In situ analysis - Run on processors	VTK-m
	In situ analysis – Batch algorithms on processors	ALPINE
	Post-processing analysis – Exploratory	Cinema

For efficient data communication: **Messaging** instead of communicating through filesystem - ADIOS

- Problem Statement:
 - Achieve exacale with multiple simulation codes (Core, Edge and more) fusion
- ECP Technique solution
 - ADIOS components allows different I/O methods (engines) to be created for code coupling, with a unified API
 - New high performance coupling engine (SST)
 - Reduced the communication time from 40s to 1s in the coupled code
 - Multiple engine type: the ADIOS coupling engine (SST), along with the MPI engine (InsituMPI), and the file based engine (BPFile) were created to target persistence, performance, and portability
- Specific impact to ECP Application
 - First time ever that a PIC (Edge) and Continuum (GENE) code have been coupled;
 - In situ visualization using VTK-M was integrated into the workflow, to enable near-real-time monitoring of the physics and performance (TAU) data
- Use on ECP Architecture(s)
 - This technology was run on Titan and has been run on Summit on 2048 nodes
 - Future plans to integrate this with the A21 machine to meet the WDM FoM goals

The figure below shows that a new tight-coupling scheme from ADIOS enabled the accurate coupling of the GENE and XGC codes

J. Dominski; S. Ku; C.-S. Chang; J. Choi; E. Suchyta; S. Parker;

S. Klasky; A. Bhattacharjee; *Physics of Plasmas* **25**, 072308

(2018) DOI: 10.1063/1.5044707

For efficient data storage: Add a layer of cache – Accelerated PnetCDF access using burst buffers

- Parallel netCDF is an important I/O library for the ECP and larger ASCR scientific computing communities.
 - Burst buffers are a partial solution to traditional I/O bottlenecks
 - The purpose of this study is to understand the efficacy of our specialized burst buffer optimizations as compared to other proposed methods of leveraging burst buffers in codes.
 - Users of PnetCDF will see performance improvements when performing I/O, with no code modifications.

Bandwidth and execution time for BTIO benchmark on Cori.

- PnetCDF burst buffer driver (blue)
- PnetCDF Direct I/O to the file system (green)
- DataWarp for stage-out (orange) which exhibits noncontiguous I/O

Burst buffer usage in HDF5 - Data Elevator

- Data Elevator VOL connector
 - Transparent data movement in storage hierarchy writes and reads
 - Intercepts file opens, write, read, and close function calls and places data in burst buffers temporarily; DE moves data asynchronously
 - Prefetches predicted chunks of data to burst buffer or memory
 - In situ data analysis capability using burst buffers
 - Phase 2 plan includes extending capabilities of Data Elevator for node-local storage

UnifyFS: A file system for burst buffers

• Sharing files on node-local burst buffers is not natively supported

- UnifyFS makes writing/reading shared files easy
 - UnifyFS presents a shared namespace across distributed storage
 - Used directly by applications or indirectly via potential integration in higher level libraries like VeloC, MPI-IO, HDF5, PnetCDF, ADIOS, etc.
- UnifyFS is fast
 - Tailored for specific HPC workloads, e.g., checkpoint/restart, visualization output
 - Each UnifyFS instance exists only within a single job, no contention with other jobs on the system

For fault tolerance and efficient data storage: Abstract/virtual interface to hide gap via asynchrony - VeloC

- Checkpointing is likely to become a serious overhead for Exascale executions
- VELOC provides a low overhead and reliable checkpoint/restart framework to ECP applications leveraging all levels of the storage hierarchy
- Close collaboration with multiple ECP applications to enable integration with VELOC

Summary of area

 Challenge: Processor to Memory/Storage Gaps

- Latency Gap
- Bandwidth/Capability Gap
- Advantage: Lots of compute available
- Services requested:
 - Fault tolerance
 - Data storage
 - Visual analysis

Overcome gaps via:	Specific approaches	Product highlight
<u>Abstract/virtual</u> interface to hide	Messaging instead of communicating through filesystem	ADIOS
gap via messaging, caching and asynchrony	Add a layer of cache – burst buffer	PnetCDF, HDF5, UnifyFS
	Asynchronous interaction between processors and storage	VeloC
Prioritize and <u>measure</u> <u>functionality</u>	Identify and evaluate I/O patterns, choose frontend API, add ADIOS, MPI-IO, pnetCDF backends, measure, compare	Darshan, HDF5, ADIOS, PnetCDF, MPI-IO
Data reduction and	Compression	SZ, ZFP
transformation	In situ analysis - Run on processors	VTK-m
	In situ analysis – Batch algorithms on processors	ALPINE
	Post-processing analysis – Exploratory	Cinema

Plan for efficient exascale data storage

Plan		Details	
1.	Identify & prioritize common I/O patterns	M to M, M to N, M to 1 read/writes and other patterns	
2.	ECP Data and Visualization supports the HDF5 API as the frontend API		
3.	Use HDF5 VOL layer or other technology to make HDF5 backends	ADIOS, MPI-IO, PnetCDF	
4.	Measure and compare, repeat	Compare on supercomputing architectures - Darshan tool	

Virtual Object Layer (VOL) for opening HDF5 API

- VOL provides an application with the HDF5 data model and API, but allow different underlying storage mechanisms
- Enables developers to easily use HDF5 on novel current and future storage systems
 - VOL connectors for using burst buffer storage transparently (Data Elevator) and for accessing DAOS are available
 - VOL plugins for reading PnetCDF and ADIOS data are in development
- Integrated into the HDF5 trunk <u>https://bitbucket.hdfgroup.org/projects/HDFFV/repos/hdf5/</u>
- Allows ADIOS and PnetCDF file formats to use HDF5 API
- VOL Connectors repo: <u>https://bitbucket.hdfgroup.org/projects/HDF5VOL</u>

For efficient data storage – Darshan - Measure and understanding overall parallel I/O patterns on exascale supercomputers

Problem statement:

- What applications are running, what interfaces are they using, and who are the biggest I/O producers and consumers?
- How busy is the I/O system, how many files are being created of what size, and how "bursty" is I/O?
- What I/O interfaces and strategies are employed by the top I/O producers and consumers? How successful are they in attaining high I/O efficiency? Why?

Global solution:

 Add Darshan monitoring software to each platform

Benchmark solution:

 For specific ECP applications to compare backends

 $\ensuremath{\mathrm{I/O}}$ strategies used by jobs as a function of job size.

Summary of area

 Challenge: Processor to Memory/Storage Gaps

- Latency Gap
- Bandwidth/Capability Gap
- Advantage: Lots of compute available
- Services requested:
 - Fault tolerance
 - Data storage
 - Visual analysis

Overcome gaps via:	Specific approaches	Product highlight
<u>Abstract/virtual</u> interface to hide	Message instead of communicate through filesystem	ADIOS
gap via messaging, caching and asynchrony	Add a layer of cache – burst buffer	PnetCDF, HDF5, UnifyFS
	Asynchronous interaction between processors and storage	VeloC
<u>Prioritize and</u> <u>measure</u> <u>functionality</u>	Identify and evaluate I/O patterns, choose frontend API, add ADIOS, MPI-IO, pnetCDF backends, measure, compare	Darshan, HDF5, ADIOS, PnetCDF, MPI-IO
Data reduction and	Compression	SZ, ZFP
transformation	In situ analysis - Run on processors	VTK-m
	In situ analysis – Batch algorithms on processors	ALPINE
	Post-processing analysis – Exploratory	Cinema

Data reduction via compression – SZ compression library

HACC Cosmology application: N-body problem with domain decomposition, medium/long-range force solver (particle-mesh method), short-range force solver (particle-particle/particle-mesh algorithm).

Particle dataset: 6 x 1D array: x, y, z, vx, vy ,vz

Preferred error controls: •Point wise error bound •Absolute (position), •Relative (Velocity)

Lossless compression ratio: ~1.77 SZ lossy compression (10-3 error bound): ~4.8 Impacts : reduce data footprint on storage, accelerate I/O Validation of the compression results using the test harness

Data reduction via compression – SZ compression library

- Performance of two electron integral simulations is <u>limited by the re-computation</u> of large number of integrals at each iteration because of lack of memory space
- The SZ team developed a new algorithm for compression of two electron integral simulation with very high compression ratio and fidelity
 - Integration in SZ and test in GAMESS
 - 16.8X compression ratio, 661MB/s compression rate, 1116MB/s decompression rate
- Performance improvement of GAMESS (on the tested cases) of 1.25 to 2.5 depending on the simulations and error bound (these accelerations are highly dependent on the simulation)
- Overall best paper award at IEEE Cluster 2018

Ref: Ali Murat Gok, Sheng Di, Yuri Alexeev, and Dingwen Tao, Vladimir Mironov, Xin Liang, Franck Cappello, PaSTRI: Error-Bounded Lossy Compression for Two-Electron Integrals in Quantum Chemistry, IEEE Cluster 2018, Belfast, IEEE press

Figure: acceleration on 1 process, serial execution, compressed integrals stored in memory.

We also have the parallel performance with the compressed integrals stored on disks.

Data reduction - ZFP provides a compressed multidimensional array primitive

- Fixed-length compressed blocks enable fine-grained read & write random access
 - C++ compressed-array classes hide complexity of compression & caching from user
 - User specifies per-array storage footprint in bits/value
 - Inspired by fixed-rate texture compression methods widely adopted in graphics hardware, but has been tailored to the high dynamic range and precision demands of scientific applications
 - Based on a new, lifted, orthogonal block transform and embedded coding, allowing each per-block bit stream to be truncated at any point if desired, thus facilitating bit rate selection using a single compression scheme
- Absolute and relative error tolerances supported for offline storage, sequential access
- Fast, hardware friendly, and parallelizable: 150 GB/s throughput on NVIDIA Volta
- HPC tool support: ADIOS, CEED, Conduit, E4S, HDF5, Intel IPP, TTK, VTK-m, ...

ZFP boosts available memory, I/O bandwidth, offline storage, and accuracy per stored bit in numerical computations

10x compression of simulation state in GENE fusion code with acceptable loss

10–1,000x I/O compression enables new science through higher-fidelity analysis

ECP Software Technology Data and Visualization projects provide an integrated workflow

Data reduction on the exascale supercomputers - VTK-m delivers portable performance of visualization algorithms across ECP processors

0.00

K20X K80

W1

- Development is accelerated by VTK-m's code once, run everywhere
 - Data parallel programming abstraction
- Ray tracing performance in VTK-m is within a factor of 2 of highly optimized, processorspecific implementations developed by Intel and NVIDIA [Larsen et al, 2015 & Moreland, et al., 2016]
- Particle advection in VTK-m performs *better* than code specifically developed for CUDA processors [Pugmire, et al. 2018]

P100 K20X

KSU

W4

K20X K80

W3

W2

P100 K20X K80 P100

W5

27

For data reduction - ALPINE in situ batch algorithms

Exascale Challenges:

- I/O limitations will require in situ approaches
- Need data-driven approaches no human in the loop

Rotation Invariant Pattern Detection

Pattern detection using moments invariance finds bubbles in a MFIX-Exa bubbling bed. Pattern can be found regardless of orientation in the data.

Histogram-based Sampling

Using a histogram-based sampling, ExaSky:Nyx halos are more distinct than using regular or random sampling methods.

ALPINE Algorithms:

- A suite of flexible analysis algorithms to identify important features, time steps, spatial extents & minimize saved data
- Deliver analysis capabilities to ECP applications across exascale architectures.
- Productized, scalable, highly parallel, sustainable solutions.
- These products will be available for ECP and beyond.

Lagrangian vector flow analysis

Topological analysis is used in a contour tree algorithm to adaptively compute optimal isovalues during in situ visualization of WarpX current density *J*. Left: isosurfaces selected uniformly. Right: isosurfaces adaptively selected.

Contour Tree Algorithm

Lagrangian analysis of Nyx vector fields allows more efficient and complete analysis and tracking of flow. Lagrangian trajectories (red) follow ground truth (black) pathlines more closely than an Eulerian approach (blue).

Example – Data reduction via in situ time step sampling for MFIX

- In situ entropy-based time step selection applied to Multiphase Energy simulation MFIX-Exa
- The use case simulates particles falling and interacting in an hourglass
- Result shows superiority of the proposed scheme over ٠ regular time step sampling

50000

5.7

5.6 xalues 5.5 5.4

5.3 5.2

5.1

10000

20000

30000

40000 Time steps

Data reduction - topological analysis identifies appropriate parameters for *in situ* visualization of simulation results

Problem:

- Compute power growing faster than I/O bandwidth; requires running visualization *in situ* to reduce I/O
- Need to determine visualization parameters (e.g., isovalues) without user interaction
 EXECTED EXECUTE

Approach:

New algorithms for topologic analysis at scale; identify most relevant isosurfaces

Impact:

Isosurface extraction one of the most common visualization techniques for scalar data; benefits many ECP applications

Exploratory post-processing visual analysis - Cinema

- Approach: Visualize all results needed while simulation data is in memory
 - Operators, camera positions/angles, simulation and algorithmic parameters
- Result: Database of data abstracts: images, meshes, run metadata, output variables, etc.
 - For images, pixel accurate results when compared to postprocessing rendering of the same data
- Properties of this solution:
 - Sampling of visualization result image output space
 - Visualization/rendering as sampling/data reduction operator
 - Enables flexible post-processing visualization and analysis on data abstracts, e.g., image-based computer vision techniques, fast visual scans/comparisons

Mega	Giga	Tera	Peta	Exa
10^6	10^9	10^12	10^15	10^18
Image	Storage & network	Operations / data size	Operations / data size	Operations / data size

Using Cinema to visually explore spatial differences for a Warp particle accelerator simulation. Left are regularly spaced isosurfaces. Right are data-driven isosufaces selected by in situ topological analysis.

31

Cinema Explorer

Conclusions

 Challenge: Processor to Memory/Storage Gaps

- Latency Gap
- Bandwidth/Capability Gap
- Advantage: Lots of compute available

• Services requested:

- Fault tolerance
- Data storage
- Visual analysis

Overcome gaps via:	Specific approaches	Product highlight
Abstract/virtual	Messaging	ADIOS
interface to hide gap via messaging, caching and	Caching	PnetCDF, HDF5, UnifyFS
asynchrony	Asynchrony	VeloC
Prioritize and measure functionality	Regularize, measure, compare	Darshan, HDF5, ADIOS, PnetCDF, MPI-IO
Data reduction and	Compression	SZ, ZFP
transformation	In situ analysis - Run on processors	VTK-m
	In situ analysis – Batch algorithms on processors	ALPINE
	Post-processing analysis – Exploratory	Cinema

END

