Introduction

- **Power consumption** is one of the major concerns in HPC
 - Desired features: power capping and power shifting [1]
- **Memory bandwidth/capacity limitations** are also severe
 - Promising solution: hybrid main memory architecture
 - DRAM + NVRAM (Intel Optane SSD[2])
 - MCDRAM + DDR4 (Intel Knights Landing[3])

Goal of this research

A sophisticated power management scheme for hybrid memory based systems

Motivation

Key observation: the effective bandwidth decreases as the footprint size scales (Fig. 1) on a hybrid memory system

As a result, the performance bottleneck changes depending on the footprint size (Fig. 3)

Objective: Maximizing performance (Perf) under a total power constraint (P_{total}) by controlling CPU/memory power (P_{cpu}/P_{mem}) for a given footprint (or problem) size (S)

- **Formulation:**
 \[
 \text{max } \frac{\text{Perf}}{P_{cpu} + P_{mem}} \leq S \text{ s.t. } P_{cpu} + P_{mem} \leq P_{total}.
 \]
- **Power Shifting Result**
 - **CPU intensive case** (Fig. 5): Shifting power from P_{mem} to P_{cpu} improves performance because the CPU becomes less critical
 - **Memory intensive case** (Fig. 6): Shifting power from P_{mem} to P_{cpu} improves performance – the DRAM needs less power due to frequent NVRAM accesses

Synthetic streaming code

- **Power Shifting Result**
 - **CPU intensive case** (Fig. 5): Shifting power from P_{mem} to P_{cpu} improves performance because the CPU becomes less critical
 - **Memory intensive case** (Fig. 6): Shifting power from P_{mem} to P_{cpu} improves performance – the DRAM needs less power due to frequent NVRAM accesses

Power Shifting Result

- **Objective:** Maximizing performance (Perf) under a total power constraint (P_{total}) by controlling CPU/memory power (P_{cpu}/P_{mem}) for a given footprint (or problem) size (S)

Solution

Footprint Aware Power Shifting: Shifting power between P_{cpu} and P_{mem} in accordance with the footprint size (S)

- We should allocate more power on the bottleneck component, which highly depends on the footprint size (Fig. 3)

Experiment

We test various combinations of (P_{cpu}/P_{mem}) and choose the best one for each footprint size (S) under a given P_{total} ($=P_{cpu}+P_{mem}$)

Evaluation Setting

- **System Configuration:** Summarized in Table 1
- **Power Management:** Running Average Power Limit (RAPL)[5]
- **Workloads:** FFT, Lulesh, and the synthetic streaming code shown in Fig. 2 (Streaming)

Environment

- **System Configuration:**
 - CPU: Xeon Gold 6154 Processor (Skylake), 18 cores, 3.0GHz, TDP 200W x2 sockets
 - Memory: DRAM: DDR4-2666 x12 modules, 12ch, 192GB
 - NVRAM: Intel Optane SSD P4800X, 375GB, 2.4GB/s(read), 2.0GB/s(write)
 - Data management: IMDT [2]
- **OS:** Cent OS 7.4
- **Compiler:** Intel C++/Fortran Compiler 17.0.4
- **Options:** -O3, -qopenmp

Table 1. System Configuration

<table>
<thead>
<tr>
<th>CPU Package</th>
<th>Xeon Gold 6154 Processor (Skylake), 18 cores, 3.0GHz, TDP 200W x2 sockets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory System</td>
<td>DRAM: DDR4-2666 x12 modules, 12ch, 192GB NVRAM: Intel Optane SSD P4800X, 375GB, 2.4GB/s(read), 2.0GB/s(write) x2 cards</td>
</tr>
<tr>
<td>Data management</td>
<td>IMDT [2]</td>
</tr>
<tr>
<td>OS</td>
<td>Cent OS 7.4</td>
</tr>
<tr>
<td>Compiler</td>
<td>Intel C++/Fortran Compiler 17.0.4</td>
</tr>
<tr>
<td>Options</td>
<td>-O3, -qopenmp</td>
</tr>
</tbody>
</table>

Results

- **Footprint-aware power shifting is promising to improve the performance of power constrained hybrid memory based systems**

Future Work

- Developing a software framework, a performance model, and a power allocation algorithm to realize our proposal
- Including NVRAM power management
- Evaluating with other hybrid memory based systems such as Intel Knights Landing

References