WebNN: A Distributed Framework for Deep Learning
Aaron Goin, Ronald Cotton and Xinghui Zhao
School of Engineering and Computer Science
Washington State University, Vancouver WA 98686, U.S.A.

Introduction
• Distributed computing technologies have been leveraged in machine learning applications
• High-end resources are used, e.g. clusters, GPUs etc.
• We develop a framework for serving and training deep neural networks over the internet.

Background
TensorFlow
• The most widely used framework for deep learning
• Recently, TensorFlow.js is added to the framework which brings machine learning to the browser

Objectives
• Develop a framework to facilitate distributing and training models in the web browser
• Effectively merge weights generated by a number of clients
• Efficiently utilize peer-owned resources distributed over the Internet

WebNN Architecture
System Design and Implementation
• WebNN server builds off of NodeJS to serve over http
• Command-line controls are supported by wnn.js
• WebNN can be deployed as a standalone server or applied to an existing application as a service

Hardware
• Both server and clients are iMacs
• 2.5GHz i5 CPU, 8GB RAM
• AMD Radeon 6750M GPU

Experimental Results
• Methodology for merging weights from multiple clients
 • Average merge: weights are simply averaged together
 \[W_n = \frac{W_{n-1} + W_p}{2}. \]
 • Weighted merge: takes potential staleness into account while averaging the weights
 \[W_n = \frac{(W_{n-1} \cdot t_{n-1} + W_p \cdot t_p)}{(t_{n-1} + t_p)}. \]
 • Mimic merge: uses the same information as weighted average, but handles differently:
 \[d = t_{n-1} - t_p, \]
 \[d > 0: \]
 \[W_D = W_p - W_{n-1} \]
 \[d < 0: \]
 \[W_D = W_{n-1} - W_p \]
 \[W_n = \frac{(W_{n-1} + W_D)}{|d| + 1}. \]

Workflow
• Users create their models in a JSON format
• Configure its training and validation properties
• Create a JavaScript module used by the server to get training and validation data
• Server hands the model off to clients for training, along with a set of weights and training data upon request
• Clients send back their modified weights to the server, and receive a new set of weights to merge into their own.

Conclusions
• WebNN is a framework for distributing and training a centralized neural network in the browser.
• WebNN can be easily deployed over a network of loosely coupled computational resources
• A peer-based weight merge system works best with a weighted average favoring weights with more training iterations behind them
• The peer-based merging can be improved to promote less variance between clients.

Acknowledgement
Special thanks to the support from WSUV Mini Research Grant.

https://labs.wsu.edu/dsr/