
Template ID: greenapple Size: 48x36

Efficient Matching of GPU Kernel Subgraphs
Robert Lim

University of Oregon

Background Methodology

Discussion

Corresponding Authors:
Boyana Norris
Allen Malony

Structured programming consists of base constructs that
represent how programs are written. When optimizing
programs, compilers typically operate on the
intermediate representation (IR) of a control flow graph
(CFG), which is derived from program source code
analysis and represents basic blocks of instructions
(nodes) and control flow paths (edges) in the graph.
Thus, the overall program structure is captured in the
CFG and the IR abstracts machine-specific intrinsics that
the compiler ultimately translates to machine code. In
particular, compilers can benefit from prior knowledge of
optimizations that may be effective for specific CFG
structures.

• Systematic process to construct control flow
graphs for GPU kernels

• Techniques to perform subgraph matching on
various kernel CFGs and GPUs

• Approaches to reveal thread divergence behavior
based on CFG properties

Differences in vertices |V| for162 CFG kernel pairs over
Euclidean measure (application, architecture, kernel)

• Most matched CFGs had similarity score between 1.5
and 2.2, with size differences under 10 vertices

• As differences increased, similarity matching degraded
due to interpolating missing information (expected)

• Demonstrated control-flow-based methodology for
analyzing performance of CUDA applications

• Combined static binary analysis with dynamic profiling
to characterize kernel intensity (memory, compute)

• Identified similarities of new implementations through
subgraph matching

Figure 3. Control flow graphs (left) and transition
probability matrices (right) for Pathfinder,
comparing Kepler, Maxwell and Pascal GPUs.

Figure 5. Error rates when estimating dynamic instruction mixes from static for
select kernels.

• NVIDIA for providing access to PSG Clusters
• American Society for Engineering Education (ASEE)

Acknowledgements

Objectives

Future Work
• Incorporate memory reuse distance statistics of a kernel

to help optimize memory subsystem and expose
compute/memory overlaps

• Characterize deep learning workloads to optimize
placement of tasks on multi-node multi-GPU setups

Results

• Transition probability matrices calculated for each kernel
subgraph

• Spline interpolation employed to scale transition matrix
before performing pairwise comparisons

• Affinity scores for CFGs (S1 and S2 for G1 and G2)
matched via similarity measures (IsoRank, Euclidean)

• Methodology evaluated on 3 GPUs (Kepler, Maxwell,
Pascal)

Instruction mix estimation error rates for MD and
Backprop kernels as a function of matched kernels, with
IsoRank scores between 1.00 to 1.30

• Subgraph matching for arbitrary kernels with IsoRank
and instruction mixes within a 8% margin of error

Figure 1. Base constructs of programs: sequence, selection and loop

Figure 2. Overview of proposed methodology

Figure 4. Differences in vertices between two graphs over Euclidean for all GPU
kernel combinations, with color as frequency

