
I/O Bottleneck Investigation in Deep Learning Systems
Sarunya Pumma,a,b Min Si,b Wu-chun Feng,a Pavan Balajib

aVirginia Tech, USA; {sarunya, wfeng}@vt.edu
bArgonne National Laboratory, USA; {spumma, msi, balaji}@anl.gov

ABSTRACT
As deep learning systems continue to grow in importance, several
researchers have been analyzing approaches to make such systems
efficient and scalable on high-performance computing platforms.
As computational parallelism increases, however, data I/O becomes
the major bottleneck limiting the overall system scalability. In this
paper, we present a detailed analysis of the performance bottle-
necks of Caffe on large supercomputing systems and propose an
optimized I/O plugin, namely LMDBIO. Throughout the paper, we
present six sophisticated data I/O techniques that address five major
problems in state of the art I/O subsystem. Our experimental results
show that Caffe/LMDBIO can improve the overall execution time
of Caffe/LMDB by 77-fold compared with LMDB.

1 INTRODUCTION
As existing parallel deep learning frameworks explore the limits
of parallelism and scalability, they have started utilizing large su-
percomputing systems and highly efficient computational units
to improve their computational efficiency. Such improvement in
the computational framework has, however, started to expose new
bottlenecks in their I/O subsystem.

To understand this problem, we first performed a detailed anal-
ysis of the Caffe [1] deep learning framework and showed that
with 9216 processes, Caffe is highly unscalable and performs nearly
660-fold worse compared to ideal strong scaling as shown in Fig-
ure 1(a). We also analyzed the breakdown in time taken by the
various components of Caffe in Figure 1(b) and note that the data
I/O time (“Read time”) takes approximately 90% of the training time
when using 9,216 processes.

The primary reason for this inefficiency is because of the ef-
ficiency of Caffe’s I/O subsystem, LMDB, on large-scale sytems,
which stems from five reasons:

(1) Interprocess contention: LMDB internally uses mmap as
a core mechanism to read data. Mmap exposes the layout of a file
from the file system into the virtual address space of a process and
enables accesses to the file as if it were a memory buffer. However,
mmap fully relies on the operating system to handle I/O operations.
Linux’s I/O interrupt handler is a bottom-half handler, where the
interrupt is not associated with any particular user process but is
a generic event informing the file system that an I/O operation
that has been issued by one or more processes has now completed.
This causes most processes that are waiting for I/O to be woken up
every time that an I/O interrupt comes in resulting in significantly
increase in the number of context switches.

(2) Implicit I/O inefficientcy: Mmap is considered implicit I/O
as actual I/O operations are hidden from user applications and
managed by the operating system. Besides convenience in I/O man-
agement, mmap is highly inefficient as amount of data to be fetched,
size of I/O request, and when data is fetched cannot be controlled
by the user applications.

(3) Sequential database access restriction: LMDB database
format, B+ tree, does not allow random accesses. To access a data
record, LMDB needs to start from the root node of the B+ tree and

parse through every branch node in the path to reach the target
data record. This data-reading model is troublesome for parallel I/O
because processes have to access different parts of the database file,
resulting in a semirandom data access pattern. This causes skew
in data I/O because different processes do different amounts of
work, which can severely degrade the overall progress of a parallel
application.

(4) Inefficient I/O block size: In parallel data reading, multiple
processes read the same batch of data in the granularity of one data
sample which can be as low as 4 KB for the CIFAR10 dataset. Small
I/O block size is proven to be inefficient in various types of I/O.
Although I/O block size does not impact the performance of mmap,
larger I/O can significantly improve the performance of some I/Os
(e.g., POSIX I/O).

(5) I/O randomization: I/O randomization is a well-known I/O
problem that happens when large number of processes participate
in I/O which causes abundant I/O requests to be out of order.

To address these shortcomings, we present LMDBIO, an opti-
mized I/O plugin for Caffe, details of which are presented in the
following section.

2 LMDBIO
In this section, we present LMDBIO optimizations.

LMDBIO-LMM [3]: LMDBIO-LMM attempts to eliminate inter-
process contention in mmap by localizing mmap. In this model, a
single process is chosen on each node as the root process. The root
process reads data from the file system and distributes it to the
remaining processes on the node using MPI-3 shared memory. The
mmap localization approach allows the traditional Linux bottom-half
handler for I/O to wake up the exact process that is waiting on I/O,
since only one process is performing I/O. This strategy minimizes
the number of context switches and helps improve performance.

LMDBIO-LMM-DM [2]: LMDBIO-DM is an enhanced version of
LMDBIO-LMM that optimizes the I/O access of Caffe in a distributed-
memory system in two steps:

Part I : Our goal is to ensure that each process would read only the
data that it needs to process. To do so, each process first reads the
data that it needs to process and then passes to the next process the
information about the location where it stopped. The data handoff
is not trivial as the position idenfier is not a simple file offset, but
rather a complex structure that contains multiple pointers. We
adopt a “symmetric address” allocation to allow for convenient
information exchange accross processes.

Part II : The previous step comes at the cost of serialization in
data I/O. Here, we try to improve parallelism in the data I/O by
speculatively performing the I/O. We first estimate what part of
the database we need to fetch to memory. This is a complex task
since the structure of the B+ tree is not deterministic. We perform
a history-based estimation in order to allow for a highly accurate
speculative I/O. Once pages are fetched to memory, we perform an
in-memory sequential seek process to find the starting point of the
data batch and send such information to the next reader. Then, the
reader can perform the actual data processing.



ICPP’18, August 13-16, 2018, Eugene, OR, USA Sarunya Pumma,a,b Min Si,b Wu-chun Feng,a Pavan Balajib

1

10

100

1000

10000

100000

Ti
m
e	
(s
)

Number	of	Processes

Caffe/LMDB Ideal

0% 
10% 
20% 
30% 
40% 
50% 
60% 
70% 
80% 
90% 

100% 

Ex
ec
ut
io
n	
Ti
m
e	B

re
ak
do

w
n

Number	of	Processes
Read	time Transform	time Total	forward	time
Total	backward	time I/O	skew	time Param	sync	time
Param	calculation	time Param	update	time

Figure 1: Caffe scalability (CIFAR10-Large dataset): (a) scaling analysis; (b) scaling time breakdown

10

100

1000

10000

100000

Ti
m
e	
(s
)

Number	of	Processes

LMDB
LMDBIO-LMM
LMDBIO-LMM-DIO
LMDBIO-LMM-DM
LMDBIO-LMM-DIO-PROV
LMDBIO-LMM-DIO-PROV-COAL
LMDBIO-LMM-DIO-PROV-COAL-STAG

1.0	 1.0	 1.1	 1.2	 1.7	
4.6	 3.5	 2.7	 3.6	 4.6	

7.7	

15.5	

36.9	

64.4	

0

10

20

30

40

50

60

70

Fa
ct
or
	o
f	I
m
pr
ov
m
en

t	o
ve
r	L
M
DB

Number	of	Processes

LMDBIO-LMM
LMDBIO-LMM-DIO
LMDBIO-LMM-DM
LMDBIO-LMM-DIO-PROV
LMDBIO-LMM-DIO-PROV-COAL
LMDBIO-LMM-DIO-PROV-COAL-STAG

Figure 2: CIFAR10-Large: (a) total execution time; (b) factor of improvement over LMDB

LMDBIO-LMM-DIO: To improve I/O read performance of LMDB,
we aim to replace mmap with POSIX I/O. Since I/O becomes explicit,
the I/O read size and the offset of the bytes to read in the file have
to be explicitly specified. Therefore, before starting the training,
LMDBIO uses one process to seek through the database to obtain
offsets and sizes of all the data records that will be used in all the
training iterations. This process has to be performed by using mmap
as the layout of the file is unknown. We call this process “sequential
seek”. Once the sequential seek is completed, the offsets and sizes
will be distributed to every reader process. The rest of the data
reading design of LMDBIO-DIO is inherited from LMDBIO-LMM
where there is only one reader per node performing data read using
POSIX I/O and data is shared among processes on the same node
using MPI-3 shared buffer.

LMDBIO-LMM-DIO-PROV: To completely eliminate sequential
seek, additional database creation information, which is known as
“provenance information” is used for determining the layout of the
database. Such information enables arbitrary database access allow-
ing us to replace mmap with POSIX I/O entirely. Since provenance
information is highly useful, LMDB should store provenance data
in addition to the original metadata. Provenance information can
be created while the database is being generated or later as post
processing using one-time read of the database. It can be stored
as part of the database or a separate auxiliary file. It is usually
relatively small compared to the database itself.

LMDBIO-LMM-DIO-PROV-COAL: Previous optimizations read
only one batch of data which some I/O request sizes are smaller
than I/O block size of the shared file system. Now that LMDBIO
uses POSIX I/O for data reading, using a larger I/O block size is
more beneficial. Therefore, a constant amount of memory of size
2.5 GB is kept aside on each node for data reading. Multiple batches
are read at once based on the constant memory size.

LMDBIO-LMM-DIO-PROV-COAL-STAG: As I/O randomization
is caused by out-of-order I/O requests, to overcome this problem,
we adopt the I/O staggering technique where some I/O requests are

delayed to arrange I/O requests to be more in order. In this opti-
mization, readers are divided into multiple groups with the same
size. Readers that access a file in close proximity to one another
will be grouped together. The key idea of our I/O staggering is to
allow only a limited number of readers (i.e., one staggering group)
to access the file concurrently in order to reduce randomization in
I/O.

3 EXPERIMENTS AND RESULTS
Our experimental evaluation was performed on Argonne’s “Bebop”
cluster.1 We use the CIFAR10-Large dataset. We used a batch size of
18,432. We trained the network for the CIFAR10-Large dataset over
512 iterations (9 million images). As shown in Figure 2(a) and (b),
Caffe/LMDBIO-LMM-DIO-PROV-COAL-STAG outperforms other
LMDBIO optimizations and Caffe/LMDB in all cases. For 9216 pro-
cesses, we achieve 77-fold better performance than Caffe/LMDB.

4 CONCLUSION
In this paper, we presented a scalable I/O plugin, called LMDBIO, for
the Caffe deep learning framework. We first performed a detailed
analysis of I/O in Caffe and discussed the cause of these problems.
We then presented LMDBIO with various optimizations to alleviate
these problems to improve the I/O performance. We presented
experimental results which demonstrate a 77-fold improvement in
the overall performance of Caffe/LMDB in some cases.

REFERENCES
[1] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross

Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolutional
Architecture for Fast Feature Embedding. arXiv preprint arXiv:1408.5093 (2014).

[2] Sarunya Pumma, Min Si, Wu chun Feng, and Pavan Balaji. 2017. Parallel I/O
Optimizations for Scalable Deep Learning. In Proceedings of the International
Conference on Parallel and Distributed Systems (ICPADS). IEEE.

[3] Sarunya Pumma, Min Si, Wu chun Feng, and Pavan Balaji. 2017. Towards Scalable
Deep Learning via I/O Analysis and Optimization. In Proceedings of the 19th
International Conference on High Performance Computing and Communications
(HPCC). IEEE.

1http://www.lcrc.anl.gov/about/bebop


	Abstract
	1 Introduction
	2 LMDBIO
	3 Experiments and Results
	4 Conclusion
	References

