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1 BACKGROUND
Supercomputers are shifting towards increasing heterogeneitywithin
compute nodes, with : machines different, specialized compute cores
and accelerators and different types of memories. In addition, the
speed of a node can increase or decrease over time due to power
management, leading to to heterogeneity in time. Application codes
are also becoming more adaptive – saving operations by adjusting
to the evolution of the system they simulate. The complexity of
such systems and their dynamic nature preclude static resource
allocation and require increasing reliance on a dynamic runtime
scheduler.

One programming model that is amenable to such approach is
that of the Asynchronous Task Model (ATM): A program consists of
a set of lightweight tasks that are dynamically scheduled when their
dependencies have been satisfied. A runtime tracks those dependen-
cies and schedule tasks so as to keep all compute devices busy and
reduce communication. Recent examples of such models include
Legion [1], PaRSEC [3], and the task model of OpenMP [14]. An
ATM runtime is also the foundation for systems such as HPX [10],
Charm++ [11] and Chapel [4]. The concepts however are not new:
ATM is the descendant of hybrid dataflow modes that were studied
in the 80’s [8].

Previous research on such systems focused on shared memory
parallelism and layered internode communication atop existing
communication libraries such as MPI [12] or GASNet [2]. Neither
was designed to support ATM: MPI was designed around the send-
receive paradigm and GASNet was designed to support PGAS lan-
guages. The basic communication and synchronization paradigm
of an ATM runtime is that of producer-consumer. The semantic
mismatch between the functionality provided by MPI or GASNet
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and the needs of higher-level runtimes mean that the communica-
tion overhead at the level of MPI or GASNet is a small fraction of
the total end-to-end overhead. It also means that the ability of Net-
work Interface Controllers (NICs) to accelerate producer-consumer
communication and coordination is limited as designed function-
ality is not exposed in MPI of GASNet. In particular, performance
deteriorates with a large number of concurrent communications.

New lower-level communication libraries are emerging as newer
standards that might replace the InfiniBand Verbs interface [9] such
as Libfabric [7] and UCX [13]. Similarly, to past efforts, these li-
braries were designed to accelerate current communication patterns
(message-passing, active messages), not to support new communi-
cation and synchronization patterns.

Our goal is to design and implement LCI, a communication li-
brary with new communication primitives to enable fast producer-
consumer coordination with no serial bottleneck, to manage irreg-
ular, fine grain communication, to take advantage of early binding
for recurring communication patterns and to provide new efficient
synchronization mechanisms that match ATMs requirements. The
communication library will be tightly integrated with task sched-
ulers and memory managers and work with multiple CPUs/GPUs.
It will be designed so as to be easily accelerated in NIC hardware
and firmware.

LCI takes advantages of the lessons learned from the study of
existing performance bottlenecks in MPI: overheads due to MPI
semantics such as wildcard matching [6], overheads due to rarely
used features such as derived datatypes, and memory consumption
issues such as request and window management [5].

2 LCI SPECIFICATION
2.1 Endpoints
LCI communications are modeled around endpoints. A process may
own multiple (logical) endpoints. The concept of endpoint need
not be in 1-to-1 correspondence with the concept of rank in MPI.
Depending on the implementation, an endpoint could be a hardware
context (thus reducing the need to multiplex different types of
communication through the same hardware pipeline, and providing
better performance isolation); or it could be one virtual client of
many using the same hardware channel. Also, an endpoint may
correspond to multiple low-level protocols (e.g., shared memory
and Infiniband). A parallel application starts with one endpoint at
each involved process. All these initial endpoints are connected
and can be used for communication between all involved processes.
New endpoints can be created locally and exchanged with other
processes, in order to connect.
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2.2 Producer/Consumer Specification
A basic point-to-point communication involves two processes and
results in data being moved from a source buffer at the producer
process to a destination buffer at the consumer process. LCI defines
multiple ways to specify a buffer in a communication call.

Piggy-back: for small data that can be attached to a single packet.
Explicit: a pair of <address, length> is specified, which repre-

sents a contiguous buffer starting at virtual address address and
containing length bytes.

Dynamic allocation: an (custom) allocator is specified which allo-
cates dynamically the destination buffer. When an allocator is used,
information on the allocated buffer is retrieved via the completion
mechanism.

2.3 Completion events
Local completion of communication in LCI is specified through
completion events. A completion event at the producer means that
the source buffer can be reused; at the consumer it means that
the destination buffer is ready for consumption. In order to reduce
overheads, the completion mechanism is specified at the endpoint
creation as a property of the endpoint, The following mechanisms
are supported.

Completion queue: Entries providing information on completed
communications are appended to a completion queue. The comple-
tion queue entries include the message metadata, origin endpoint
and if needed, piggy back data or a buffer descriptor.

Synchronizer: A synchronization method that is applied to a
synchronization object specified in the call. The synchronizer is an
interface that can be overridden by the thread package so that it
can be inlined. The synchronization object may have extra fields to
hold the message metadata and the data itself, or a buffer descriptor.
The simplest synchronizer provided by default is to set a flag.

Generic Handler : The call specifies a handler to execute upon
completion. The handler is passed the message metadata and either
the piggy back data or a buffer descriptor. This is similar to an
Active Message.

2.4 One-sided and two-sided communication
In two-sided communication, the producer (sender) specifies the
source buffer, the source endpoint where the completion event will
be triggered and the destination endpoint where the data will be
routed to. The consumer (receiver) specifies the destination buffer
and the destination end-point to receive the data and trigger com-
pletion. Two-sided communication can specify a tag for matching
between sender and receiver; however, no wildcard matching is
allowed for scalable message-matching with many threads [6].

The one-sided communication is similar but takes effect by only
one call, either on the producer side (Put) or the consumer side
(Get); this call specifies additionally, the source/destination buffer
depending on whether this is producer or consumer side.

3 PRELIMINARY RESULTS
We integrate LCI with our customized thread scheduler and com-
pare its performance with traditional approach using MPI+OpenMP
(latest MPICH and OpenMPI). This micro-benchmark spawns two
processes in two different nodes, each creates a number of threads.

Figure 1: LCI outperforms MPICH and OpenMPI on
OpenMP using multi-threaded point-to-point varying num-
ber of sender or receiver threads. Performance is done on
Stampede2 cluster.

A thread in the sender process issues a send then a receive, while
a thread in the receiver process issue a receive then a send that
match a single thread of the sender process using an appropriate
tag. The performance shows LCI consistently maintains low latency
per message, while MPI+OpenMP degrades with more send/receive
threads.
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