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ABSTRACT
Push-pull, also known as direction-optimized breadth-�rst-search

(DOBFS), is a key optimization for making breadth-�rst-search (BFS)

run e�ciently. Linear algebra-based frameworks have advantages

in conciseness, performance and portability. However, there is no

work in literature describing how to implement it within a linear

algebra-based framework. Our work shows that DOBFS �ts well

within the linear algebra-based framework.
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1 INTRODUCTION
Push-pull, also known as direction-optimized breadth-�rst-search

(DOBFS), is a key optimization for making breadth-�rst-search

(BFS) run e�ciently [3]. According to the Graph Algorithm Plat-

form [2], no fewer than 32 out of the top 37 entries on the Graph500

benchmark (a suite for ranking the fastest graph frameworks in

the world) use direction-optimizing BFS. Since its discovery, it has

been extended to other traversal-based algorithms [5, 11]. One

of our contributions in this paper is factoring Beamer’s direction-

optimized BFS into 3 separable optimizations, and analyzing them

independently—both theoretically and empirically—to determine

their contribution to the overall speed-up. �is allows us to gen-

eralize these optimizations to other graph algorithms, as well as

�t it neatly into a linear algebra-based graph framework. �ese 3

optimizations are, in increasing order of speci�city:

(1) Change of direction: Use the push direction to take advan-

tage of knowledge that the frontier is small, which we term

input sparsity. When the frontier becomes large, go back

to the pull direction.

(2) Masking: In the pull direction, there is an asymptotic speed-

up if we know a priori the subset of vertices to be updated,

which we term output sparsity.

(3) Early-exit: In the pull direction, once a single parent has

been found, the computation for that undiscovered node

ought to exit early from the search.
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GraphBLAS is an e�ort by the graph analytics community to

formulate graph algorithms as sparse linear algebra [6]. �e goal of

the GraphBLAS API speci�cation is to outline the common, high-

level operations such as vector-vector inner product, matrix-vector

product, matrix-matrix product, and de�ne the standard interface

for scientists to use these functions in a hardware-agnostic manner.

�is way, the runtime of the GraphBLAS implementation can make

the di�cult decisions about optimizing each of the GraphBLAS

operations on a given piece of hardware.

Previous work by Beamer et al. [4] and Besta et al. [5] have

observed that push and pull correspond to column- and row-based

matvec (Optimization 1). However, this realization has not made it

into the sole GraphBLAS implementation in existence so far, namely

SuiteSparse GraphBLAS [9]. In SuiteSparse GraphBLAS, the BFS

executes in only the forward (push) direction.

�e key distinction between our work and that of Shun and

Blelloch [11], Besta et al. [5], and Beamer et al. [4] is that while

they take advantage of input sparsity using change of direction

(Optimization 1), they do not analyze using output sparsity through

masking (Optimization 2), which we show theoretically and em-

pirically is critical for high performance. Furthermore, we submit

this speed-up extends to all algorithms for which there is a priori
information regarding the sparsity pa�ern of the output such as tri-

angle counting [1], adaptive PageRank [10], batched betweenness

centrality [6], and maximal independent set [7].

Since the input vector can be either sparse or dense, we refrain

from referring to this operation as SpMSpV (sparse matrix-sparse

vector) or SpMV (sparse matrix-dense vector). Instead, we will refer

to it as matvec (short for matrix-vector multiplication and known

in GraphBLAS as GrB mxv).

2 APPLICATIONS
�e details of these optimizations are in the full paper of this con-

ference [12], so we will give some details here on how masking can

be used in the four applications mentioned above.

2.1 Triangle counting
Algorithm 1 gives the algorithm for triangle counting as described

by Azad, Buluç and Gilbert [1].

2.2 Adaptive PageRank
Algorithm 2 gives the algorithm for adaptive PageRank as described

by Kamwar, Haveliwala and Golub [10].
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Algorithm 1 Triangle counting with A as the mask.

1: procedure TriangleCount(Undirected graph A)

2: L← lower triangular(A) . tril() in MATLAB
3: U← upper triangular(A) . triu() in MATLAB
4: C← A .∗ (L × U)
5: num tri← nnz(C)
6: return num tri
7: end procedure

Algorithm 2 Adaptive PageRank with v as the mask.

1: procedure AdaptivePR(Directed graph A, Initial PageRank x(0) , Ab-

solute tolerance ϵ )

2: v← {1, 1, ..., 1}

3: k ← 0

4: while δ < ϵ do
5: x(k+1) ← v .∗ (A × x(k ) )
6: v← ���x

(k+1) − x(k ) ��� < ϵ
7: k ← k + 1

8: δ = 


Ax
(k ) − x(k )


1

9: end while
10: return xk

11: end procedure

2.3 Batched betweenness centrality
Algorithm 3 gives the algorithm for batched betweenness centrality

as described by Buluç et al. [6].

2.4 Maximal independent set
Algorithm 4 gives an algorithm for maximal independent set as

described by Buluç et al. [7].

3 CONCLUSION
In our full paper [12], we have demonstrated that push-pull corre-

sponds to the concept of column- and row-based masked matvec.

We have experimental evidence that masking is advantageous from

both a theoretical and empirical standpoint. In this paper, we have

demonstrated that masking is a very common operation in graph

analytics. It is applicable to applications such as triangle counting,

adaptive PageRank, batched betweenness centrality, and maximal

independent set. A possible future research direction would be to

provide experimental evidence for these four algorithms against

existing, state-of-the-art implementations.
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