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ABSTRACT
Scientific and engineering applications often involve the solution of
large sparse linear systems; hence, scalable preconditioned iterative
methods are a popular choice. There are many software libraries
that offer a variety of preconditioned Newton-Krylov methods
for solving sparse problems. However, the selection of an optimal
Krylov method remains to be user’s responsibility. This document
outlines the technique we propose for the optimal solver method
suggestions based on the problem characteristics and the amount
of communication involved in the Krylov methods.
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Problems from a variety of domains can be represented in the form
of linear systems of equations. Such domains include astrophysics,
computational fluid dynamics, thermodynamics among many oth-
ers, e.g. [4, 7]. The solution of large linear systems is a fundamental
component of many scientific and engineering applications, and
high-performance numerical frameworks rely on advanced and
optimized packages like PETSc [1] for the solution of such systems.
For solving these equations, there are two main approaches: di-
rect and iterative solver techniques. Direct solvers find a solution
close to the exact solution of the problem by using a limited set
of operations. Iterative methods provide an approximation of the
solution by starting with an initial guess and updating the solu-
tion approximations over multiple iterations. Linear systems can
be classified as dense or sparse, depending on the number of zero
elements present in the coefficient matrix. Systems with a large
number of zero-valued elements are referred to as sparse linear
systems. The second class of linear systems are dense linear systems
where majority of the elements have non-zero values.

In many applications, the solution of large sparse linear systems
is a key computation whose performance dominates the overall
solution time. For example, applications that solve nonlinear partial
differential equations through numerical approximations such as
the Newton-Krylov family of methods, spend most of their time in
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the iterative linear system solution, which can be performed by any
of the large number of preconditioned Krylov methods available.
While the functionalities of these methods are equivalent, their
performance (how fast a solution is found) varies greatly depending
on the characteristics of the input linear system. The proliferation
of available solution methods makes the task of selecting a specific
algorithm that performs well extremely challenging.

My research enables computer and computational scientists to
choose a well-performing solution technique for their problems
that can be represented as linear systems. While ideally we would
like to find the optimal method, in practice, this is infeasible due
to the problem size and complexity. Hence, I investigate machine
learning and other modeling approaches to determine what solvers
are likely to perform significantly better than the majority of so-
lution methods for a given problem. We use PETSc, which offers
a variety of scalable solvers and preconditioners that can be used
for solving scientific applications modeled by partial differential
equations. For enabling well-performing solver selection, we have
defined a technique for selecting solution methods with minimal
or no input from the user. In this document, we illustrate how this
approach is used in practice for solver selection.

1 APPROACH OVERVIEW
We model two aspects of the performance of Krylov methods: con-
vergence behavior and communication overhead. Our machine
learning (ML) model captures the convergence behavior of the
Krylov methods via a supervised ML approach. Our analytical ap-
proach characterizes the communication performed in the Krylov
methods to quantify their scalability. The convergence model can
be used as a standalone for getting solver suggestions at moderate
scale. For larger processor counts, the convergence model can be
improved by combining it with the communication model. In this
section, we describe the two models and how to combine them.

1.1 Convergence Model
We classify different Krylov methods based on their performance
using several supervised ML techniques. For training the model,
we use the University of Florida matrices [2] with the right hand
side vector having all elements set to 1. We solve each linear sys-
tem with multiple solver-preconditioner combinations and capture
the solver timing. We compute various features of these systems
such as the trace or row/column value variability. These proper-
ties along with the solver-preconditioner combinations, together
form the training set. Next, we build a binary classifier that labels
solvers as “good” or “bad” based on their computation time. We
apply different ML algorithms [5] to classify solvers and perform
supervised learning. We validate the model by performing 10-fold
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cross validation and a 66 − 34% train-test validation. Finally, we
select the ML algorithm that performs the best and classifies solver
performance most effectively.

One of the most expensive steps in the convergence modeling is
the feature collection. For reducing its cost, we identify the most
relevant features and rebuild the ML classifier using only the re-
duced feature sets. The output of the convergence model is a list of
“good” solver recommendations. Figure 1 shows the different stages
involved in the model.

Figure 1: ML model for solver classification.

1.2 Communication Model
For problems that require high levels of parallelism (> 1000 cores),
we propose a method for modeling the performance of parallel
preconditioned Krylov methods. With this model, we analyze the
solver and preconditioner algorithms provided by PETSc, identify-
ing the operations that perform inter-process communication for
each iteration. Next, we count the number of times these operations
are called for each algorithm. We only focus on the iteration and
do not consider operations in setup or I/O functions, which are
outside of the Krylov solver iteration. In this model, we analyze
communication alone, since solution time is modeled using the
convergence model. We exclude the operations that are common
for all solvers and preconditioners.

Figure 2: Communication model for solver ranking.

We use the analytical ranking of preconditioned Krylov methods
to address the challenge of modeling the scalability of algorithms.
We validate the accuracy of the model by applying it on a numer-
ical simulation of driven fluid flow in a two dimensional cavity.
Figure 2 shows the stages in the communication model. The result
is a communication-wise ranking for the preconditioned and non-
preconditioned cases. The solver ranking list obtained from this
model, is combined with the ML-generated solver list to find the
intersection, which generates a ranked list of “good” solvers.

1.3 Model Usage
We make a solver suggestion based on the ML approach and the
communication-based approach together, because either of the
models as a standalone does not capture both the computation and
communication aspects. For modeling the solvers’ scalability for
large processor counts, collecting the training data for the conver-
gence model is prohibitively expensive. In such cases, we model
the computation aspect with the convergence model (To maintain
low cost, the convergence model is trained with data collected on
small processor counts) and parallel overhead with the communi-
cation model. This is achieved by applying the ML-based approach
in combination with the communication model to enable solver
recommendations at different scales of parallelism.

2 MATRIX-FREE FEATURE COMPUTATION
Our research also considers a matrix-free approach for selecting
iterative Krylov methods. When all the matrix elements are stored
and available at any given time, various features of the matrix can
be computed, such as the number of rows, matrix diagonal, and
others. For some PDE-based applications, storing the matrix is pro-
hibitively expensive in terms of memory and computation time.
Krylov methods can, however, solve the linear system by approxi-
mating matrix-vector products without explicitly assembling the
matrix [6], thus supporting even larger problems.

3 RESULTS
We demonstrate the matrix-free approach for ML-based selection of
preconditioned Krylov methods by training and testing our model
with the MOOSE [3] matrices. The training and test set have 3, 875
and 970 data points respectively. We have 27 features in the full
feature set and 7 features in the reduced set (RS1). J48 (C4.5 decision
tree) shows the best results with an accuracy of 82.0% with RS1.

4 CONCLUSION
This research enables iterative solver recommendations for large
sparse linear systems by modeling the convergence behavior and
the parallel overhead. Users can rely on the the ML classifier recom-
mendations for moderate scales of parallelism (hundreds of tasks).
For cases where modeling both computation and communication is
useful, we find the top-ranked methods in terms of communication
overhead within that the set of ML suggestions.
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