
SOSflow: A Scalable Observation System
for Introspection and In Situ Analytics

Chad Wood
University of Oregon

Eugene, OR, United States
cdw@cs.uoregon.edu

ABSTRACT
The performance of HPC simulation codes is often tied to their sim-
ulated domains; e.g., properties of the input decks, boundaries of the
underlying meshes, and parallel decomposition of the simulation
space. A variety of research efforts have demonstrated the utility
of projecting performance data onto the simulation geometry to
enable analysis of these kinds of performance problems. However,
current methods to do so are largely ad-hoc and limited in terms of
extensibility and scalability. Furthermore, few methods enable this
projection online, resulting in large storage and processing require-
ments for offline analysis. We present a general, extensible, and
scalable solution for in-situ (online) visualization of performance
data projected onto the underlying geometry of simulation codes.
Our solution employs the scalable observation system SOSflow
with the in-situ visualization framework ALPINE to automatically
extract simulation geometry and stream aggregated performance
metrics to respective locations within the geometry at runtime.
Our system decouples the resources and mechanisms to collect,
aggregate, project, and visualize the resulting data, thus mitigating
overhead and enabling online analysis at large scales. Furthermore,
our method requires minimal user input and modification of exist-
ing code, enabling general and widespread adoption.

KEYWORDS
sos, sosflow, hpc, performance, visualization, in situ

1 INTRODUCTION
Modern clusters for parallel computing are complex environments.
High-performance applications that run on modern clusters do so
often with little insight about their or the system’s behavior. This
is not to say that information is unavailable. After all, sophisticated
parallel measurement systems can capture performance and power
data for characterization, analysis, and tuning purposes, but the
infrastructure for observation of these systems is not intended for
general use. Rather, it is specialized for certain types of perfor-
mance information and typically does not allow online processing.
Other information sources of interest might include the operating
system (OS), network hardware, runtime services, or the parallel
application itself. Our general interest is in parallel application
monitoring: the observation, introspection, and possible adaptation
of an application during its execution.

Application monitoring has several requirements. It is impor-
tant to have a flexible means to gather information from different
sources on each node — primarily the application and system envi-
ronment. Additionally, for the gathered information to be processed
online, analysis will need to be enabled in situ with the application.

Query and control interfaces are required to facilitate an active
application feedback process. The analysis performed can be used
to give feedback to both the application, the operating environment,
and performance tools.

This research demonstrates the Scalable Observation System (SOS)
for integrated application monitoring. The SOS design employs a
data model with distributed information management and struc-
tured query and access. A dynamic database architecture is used in
SOS to support aggregation of streaming observations from multi-
ple sources. Interfaces are provided for in situ analytics to acquire
information and then send back results to application actuators
and performance tools. SOS launches with the application, runs
along side it, and can acquire its own resources for scalable data
collection and processing. A working implementation of SOS is
contributed as a part of this research effort, SOSflow [4]. The SOS-
flow platform demonstrates all of the essential characteristics of
the SOS model, showing the scalability and flexibility inherent to
SOS with its support for observation, introspection, feedback, and
control of scientific workflows.

1.1 Scientific Workflows
Scientific workflows feature two or more components that are
coupled together, operating over shared information to produce a
cumulative result. These components can be instantiated as light-
weight threads belonging to a single process, or they may execute
concurrently as independent processes. Components of workflows
can be functionally isolated from each other or synchronously cou-
pled and co-dependent. Some workflows can be run on a single
node, while others are typically distributed across thousands of
nodes. Additionally, parts of workflows may even be dynamically
instantiated and terminated. The computational profile of a work-
flow can change between invocations or even during the course of
one execution.

1.2 Multiple Perspectives
Application state and events can be sent to SOS from within the
application at any point during its execution. Developers can in-
strument their programs to be efficiently self-reporting the data that
is relevant to their overall performance, such as progress through
specific phases of a simulation.

Application performance can be dramatically impacted by changes
in the state of the operating environment that is hosting it. The ef-
fects of contention for shared resources by multiple concurrent
tasks can be discovered when the events of concurrent tasks are
fixed into a common context for reasoning about their individ-
ual and combined performance. SOS’s distributed in situ design is



ICPP’18, August 2018, Eugene, OR C. Wood

well-suited for capturing perspective of the global state of a ma-
chine. By co-locating the observation system with the workflow
components that are observed, SOS improves the fidelity of system
performance data without requiring the costly delays of synchro-
nization or congesting the shared network and filesystem resources
in use by applications.

Many existing performance tools can provide useful observations
at runtime of applications, libraries, and the system context. The
low-level timers, counters, and machine-level data points provided
by specialized performance tools can be a valuable addition to the
higher-level application and system data.

2 PERFORMANCE UNDERSTANDING
Projecting application and performance data onto the scientific
domain allows for the behavior of a code to be perceived in terms
of the organization of the work it is doing, rather than only the
organization of its source code. This perspective can be especially
helpful [3] for domain scientists developing aspects of a simulation
primarily for its scientific utility, though it can also be useful for
any HPC developer engaged with the general maintenance require-
ments of a large and complicated codebase [2].

There have been practical challenges to providing these oppor-
tunities for insight. Extracting the spatial descriptions from an
application traditionally has relied on hand-instrumenting codes
to couple a simulation’s geometry with some explicitly defined
performance metrics. Performance tool wrappers and direct source-
instrumentation need to be configurable so that users can disable
their invasive presence during large production runs. Because it
involves changes to the source code of an application, enabling or
disabling the manual instrumentation of a code often involves full
recompilation of a software stack. Insights gained by the domain
projection are limited to what was selected a priori for contextual-
ization with geometry.

Without an efficient runtime service providing an integrated con-
text for multiple sources of performance information, it is difficult
to combine performance observations across several components
during a run. Further limiting the value of the entire exercise, per-
formance data collected outside of a runtime service must wait to
be correlated and projected over a simulation’s geometry during
post-mortem analysis. Projections that are produced offline cannot
be used for application steering, online parameter tuning, or other
runtime interactions that include a human in the feedback loop.
Scalability for offline projections also becomes a concern, as the
potentially large amount of performance data and simulation ge-
ometry produced and operated over in a massively parallel cluster
now must be integrated and rendered either from a single point or
within an entirely different allocation.

The overhead of manually instrumenting large complex codes
to extract meaningful geometries for use in performance analysis,
combined with the limited value of offline correlation of a fixed
number of metrics, naturally limited the usage of scientific domain
projections for gaining HPC workflow performance insights.

2.1 Research Contributions
This work makes use of SOSflow and ALPINE Ascent [1] to over-
come many prior limitations to projecting performance into the
scientific domain. This research effort achieved the following:
• Eliminate the need to manually capture geometry for per-
formance data projections of ALPINE-enabled workflows
• Provide online observation of performance data projected
over evolving geometries and metrics
• Facilitate interactive selection of one or many performance
metrics and rendering parameters, adding dynamism to pro-
jections
• Enable simultaneous online projections from a common data
source
• In situ performance visualization architecture supporting
both current and future-scale systems

REFERENCES
[1] Matthew Larsen, James Aherns, Utkarsh Ayachit, Eric Brugger, Hank Childs, Berk

Geveci, and Cyrus Harrison. 2017. The ALPINE In Situ Infrastructure: Ascending
from the Ashes of Strawman. In Proceedings of the In Situ Infrastructures for
Enabling Extreme-Scale Analysis and Visualization Workshop (ISAV2017). ACM,
New York, NY, USA.

[2] Martin Schulz, Abhinav Bhatele, David Böhme, Peer-Timo Bremer, Todd Gamblin,
Alfredo Gimenez, and Kate Isaacs. 2015. A Flexible Data Model to Support Multi-
domain Performance Analysis. In Tools for High Performance Computing 2014.
Springer, 211–229.

[3] Martin Schulz, Joshua A Levine, Peer-Timo Bremer, Todd Gamblin, and Valerio
Pascucci. 2011. Interpreting performance data across intuitive domains. In Parallel
Processing (ICPP), 2011 International Conference on. IEEE, 206–215.

[4] Chad Wood, Sudhanshu Sane, Daniel Ellsworth, Alfredo Gimenez, Kevin Huck,
Todd Gamblin, and Allen Malony. 2016. A scalable observation system for
introspection and in situ analytics. In Proceedings of the 5th Workshop on Extreme-
Scale Programming Tools. IEEE Press, 42–49.


	Abstract
	1 Introduction
	1.1 Scientific Workflows
	1.2 Multiple Perspectives

	2 Performance Understanding
	2.1 Research Contributions

	References

