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Abstract
The modular integer greatest common divisor (GCD) algorithm [9] holds

promise to provide superior performance to sequential algorithms on extremely
large input. In order to demonstrate the efficacy of the algorithm, an imple-
mentation on a system with multiple Graphics Processing Units (GPUs) is
proposed, based on a single-GPU implementation described herein. The im-
plementation’s performance is analyzed to predict the size of input needed to
demonstrate superior performance when compared to one popular sequential
implementation of the integer GCD.

Introduction

Euclid’s algorithm to compute the greatest common divisor (GCD) of
two integers is one of the oldest algorithms known [7, sect. 4.5.2].
His algorithm describes a process that is inherently sequential, as
are most algorithms typically used to compute the GCD, including
those currently used by the the GNU Multiprecision Arithmetic Li-
brary (GMP) [6]. The modular integer GCD algorithm [9] is unique
in that it employs a modular representation for the integer inputs and
intermediate results in order to provide a way to parallelize the task.
This poster describes an implementation [1] of the modular algorithm
on a single NVIDIA graphics processing unit (GPU) [5]. Although its
performance is inferior to the GCD operation provided by GMP, there
is hope that it can be used as a building block for a multinode imple-
mentation that would provide superior performance on very large input
values.

Algorithm

The single GPU implementation follows the version of the modular
algorithm given in Figure 1. Differences between it and the original
include corrections of the following errors in the original [9, Fig. 2]:

• Step MGCD3.2 had a simple typographic error that is corrected in
the forall starting on line 12.

• Step MGCD4 mistakenly posited that the final result can be com-
puted as each mixed-radix digit and modulus are obtained from the
modular representation; lines 23–30 correctly compute all the mixed
radix digits and moduli before the recovery of the result begins.

Another difference between the two algorithms stems from the fact that
the original algorithm requires a very large number of moduli to guar-
antee a correct result; in most cases it is possible to use significantly
fewer moduli. The algorithm in Figure 1 returns a failure code if the
smaller number of moduli chosen is insufficient.

Other Notes:

•A symmetrical modular representation is used to represent values in
the range −bq/2c to bq/2c, instead of 0 to q − 1.

• Inputs are originally in a positional representation, so conversion to
and from modular representation must be done.

•Modular division is simply multiplication by the modular inverse:
u/v mod q = u · v−1 mod q, where v · v−1 ≡ 1 mod q.

• The modular inverse can be computed with an extended greatest
common divisor algorithm [7, p. 290].

Input: Positive integers U and V , with U ≥ V
Output: gcd(U, V )

Constants: L = integer ≥ 2
M = set of primes in the range (2L−1, 2L)
CL = 1.6− 0.015 · L

1 Nu← blog2Uc + 1, Nv ← blog2 V c + 1
2 NQ← dCL ·Nu/ log10Nue
3 if NQ > ||M|| then return fail
4 Q ← the set of NQ largest elements ofM
5 forall q ∈ Q do
6 [uq, vq]← [U mod q, V mod q]
7 tq ← if vq = 0 then∞ else uq/vq mod q
8 end
9 [p, b]← [element q of Q for which |tq| is minimal, tq]

10 repeat // Reduction loop
11 Q ← Q− {p}
12 forall q ∈ Q do
13 [uq, vq]← [vq, (uq − b · vq)/p mod q]
14 tq ← if vq = 0 then∞ else uq/vq mod q
15 end
16 NQ← NQ − 1, [Nu, Nv]← [Nv, Nv − L + blog2 bc]
17 if NQ (L− 2) ≤ Nu then // Can’t recover G
18 return fail
19 [p, b]← [element q of Q for which |tq| is minimal, tq]
20 until b =∞
21 k ← 1, G← 0
22 [p1, g1]← [element q of Q with priority to uq 6= 0, uq]
23 repeat // Recover mixed-radix representation
24 Q ← Q− {pk}
25 forall q ∈ Q do uq ← (uq − gk)/pk mod q
26 k ← k + 1
27 [pk, gk]← [element q of Q with priority to uq 6= 0, uq]
28 until gk = 0
29 for i = k − 1 downto 1 do G← gi + piG
30 return |G| // Return standard representation

Figure 1: Modular algorithm, as implemented

Implementation Notes
• The implementation uses moduli in the range 231 < q < 232.

•A technique of Cavagnino and Werbrouck [2] allows us to compute
x mod q via 64-bit multiplication rather than 64-bit division.

•Our use of Cavagnino and Werbrouck’s technique restricts the num-
ber of usable moduli to 68 million out of 98 million 32-bit primes.

• Synchronization among the thread blocks—needed on lines 9, 19, 22
and 27—is done by either cooperative groups [5, Appendix C] or a
custom-built barrier employing spin-waiting.

• Cooperative groups are stabler and scalable, but the barrier is faster
on Pascal and later GPUs and necessary for older GPUs.

•Global minimum is performed by combining two levels of reduction
operations in each thread block (using warp shuffle [5, Appendix
B.15]) with synchronization among the thread blocks.

Results
The single-GPU implementation was executed on several different
GPUs, given randomly generated inputs of various sizes. Times for
each execution are plotted in Figure 2 below, against the time needed
to execute the GCD operation from GMP on a reference CPU—an Intel
Xeon E5-2620.
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Figure 2: Modular GCD times vs GMP GCD time

Figure 3 highlights the behavior of the ModGCD algorithm on the
Tesla V100. In addition, a least-squares linear fit to the first ten times
given for the V100 is plotted, which provides us with a means to pre-
dict the behaviour of the algorithm, given enough execution resources
(i.e., cores) to allow it to exhibit its linear behavior in terms of execu-
tion time. Admittedly, this ignores possible non-linear communication
behavior.
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Figure 3: Modular GCD behavior on Tesla V100

Conclusions
•A multinode implementation of the algorithm would become supe-

rior to the GMP GCD implementation at inputs of around 250 mil-
lion bits (modular = 112 sec vs. GMP = 121 sec).
• The 68 million 32-bit moduli available would sustain GCD compu-

tation on inputs up to 529 million bits.

Future Work
We intend to build and test a multinode implementation on the Owens
supercomputer at the Ohio State University [4]. In order to demon-
strate efficacy, it will be necessary to employ a larger system, such as
the Summit supercomputer at the Oak Ridge National Laboratory [8].
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