
WebNN: A Distributed Framework for Deep Learning
Aaron Goin, Ronald Cotton and Xinghui Zhao
School of Engineering and Computer Science

Washington State University, Vancouver WA 98686, U.S.A.

Introduction

Background

Objectives

WebNN Architecture Workflow

Conclusions

• Distributed computing technologies have been 
leveraged in machine learning applications

• High-end resources are used, e.g. cluters, 
GPUs etc. 

• We develop a framework for serving and 
training deep neural networks over the internet.

Tensorflow
• The most widely used framework for deep 
learning

• Recently, TensorFlow.js is added to the 
framework which brings machine learning to 
the browswer

• However, it requires additional services on 
the backend to distribute trained models to 
the clents

Experimental Results

• WebNN is a framework for distributing and training a 
centralized neural network in the browser.

• WebNN can be easily deployed over a network of 
loosely coupled computational resources

• A peer-based weight merge system works best with 
a weighted average favoring weights with more 
training iterations behind them

• The peer-based merging can be improved to 
promote less variance between clients. 

https://labs.wsu.edu/dsr/

• Develop a framework to facilitate distributing 
and training models in the web browser

• Effectively merge weights generated by a 
number of clients

• Efficiently utilize peer-owned resources 
distributed over the Internet

System Design and Implementation
• WebNN server builds off of NodeJS
to serve over http

• Command-line controls are 
supported by wnn.js

• WebNN can be deployed as a 
standalone server or applied to an 
existing application as a service 

• Both server and clients are iMacs
• 2.5GHz i5 CPU, 8GB RAM
• AMD Radeon 6750M GPU

Hardware

Acknowledgement
Special thanks to the support from WSUV Mini 
Research Grant. 

• Users create their models in a JSON format
• Configure its training and validation properties
• Create a JavaScript module used by the 
server to get training and validation data

• Server hands the model off to clients for 
training, along with a set of weights and 
training data upon request

• Clients send back their modified weights to 
the server, and receive a new set of weights 
to merge into their own.

• Methodology for merging weights from multiple clients
• Average merge: weights are simply averaged together 

• Weighed merge: takes potential staleness into account while 
averaging the weights

• Mimic merge: uses the same
information as weighted
average, but handles 
differently: 


