
Designing Domain Specific Heterogeneous Manycores from
Dataflow Programs

Extended Abstract

Süleyman Savas
School of Information Technology, Halmstad University

Halmstad, Sweden
suleyman.savas@hh.se

ABSTRACT
We propose a design method to develop domain-specific hetero-
geneous manycores by extending simple cores with custom in-
structions based on application requirements. We develop tools
to automate the design method and facilitate development of the
manycores. The tools generate competitive hardware/software co-
design in terms of performance and hardware resource usage.

ACM Reference Format:
Süleyman Savas. 2018. Designing Domain Specific Heterogeneous Many-
cores from Dataflow Programs: Extended Abstract. In Proceedings of 47th
International COnference on Parallel Processing (ICPP 2018). ACM, New York,
NY, USA, 2 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The requirements on the performance of computers continuously
increase with the emerging applications of each era. Machine learn-
ing, baseband signal processing, radar signal processing, high def-
inition audio/video processing, financial applications as well as
many other scientific applications are the performance demanding
applications of the current era.

The common trend in the current multi and manycore archi-
tectures is homogeneity on the same chip where the processing
units (cores) are identical. However, the target applications have a
heterogeneous structure in which the tasks are different and require
different hardware resources for efficient execution. Therefore they
require heterogeneous architectures. Heterogeneity can be intro-
duced in many different forms. A simple form is simple cores with
different extensions to execute different tasks efficiently.

We propose a design method to develop manycore architectures
which can execute a domain of applications efficiently by utilizing
cores specialized on computationally intensive tasks in the applica-
tions. Specialization increases the efficiency however, decreases the
flexibility. Therefore we propose usage of a number of specialized
cores on the same chip to support efficient execution of a number
of applications in the same domain. Additionally, the cores can still
be used for general purposes, however they will not be as efficient.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPP 2018, August 13-16, 2018, Oregon, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Instead of exploring the design space to find a suitable architecture
for the target applications we propose to build the architectures
based on the requirements of the applications. With this method,
we aim to develop task specific extensions and integrate them into
simple cores. The cores can run the control logic and delegate the
computations to the accelerators.

A common feature of the target applications is having a chain
of tasks processing a continuous stream of data. This computa-
tion model can be implemented easily with dataflow programming
model. Therefore we use this model for implementing the target ap-
plications. As the language, we use CAL actor language [4] which is
a modern dataflow language and used in standardization of MPEG.

2 METHODOLOGY
The design method aims to build an efficient architecture for a
specific domain of applications by integrating task-specific custom
hardware into simple cores. The steps of the proposed method are
as below:

• Application development
• Analysis and code generation
• Accelerator integration
• System integration

The architecture configurations are based on the requirements
of the applications. Therefore, the design method starts from the
application description. The application should be developed in a
language with support for parallelism. Having the application di-
vided into separate tasks/functions/actions makes it easy to identify
the compute intensive blocks.

The purpose of the task-specific custom hardware is to execute
the compute intensive parts (hot-spots) of the applications. In order
to find these hot-spots, the application needs to be analyzed. Anal-
ysis methods are usually divided into static and dynamic analysis
methods [6–8]. Static analysis can provide the number of opera-
tions and operands in an application. This information can be used
to estimate execution times for applications which have constant
or static behavior. However, dynamic analysis is required to obtain
execution measures for applications with dynamic behavior, and
to define the most frequently executed, computationally-intensive
code blocks. Useful analysis information for hot-spot identifica-
tion includes execution rate, number of operations and operands,
complexity of the operations, and execution time.

After identifying the hot-spot of the application, hardware code
should be generated for the accelerator that will execute the hot-
spots. The rest of the application can be converted to a software
language that is supported by the native compiler of the target core.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


ICPP 2018, August 13-16, 2018, Oregon, USA Süleyman Savas

The target core executes the application and delegates the hot-
spot execution to the generated accelerator. Thus the accelerator
must be integrated to the target core. It can be connected to the data
bus and be memory mapped, or it can be connected through custom
interfaces, or even act as an instruction extension. The integration
method can vary based on aspects such as the features of the base
core, architectural requirements, and application requirements.

The prior steps of the design flow produce tiles consisting of pro-
cessing core and accelerator for individual tasks in the applications.
To execute the entire application, or a set of applications, the tiles
need to be connected to each other to form a manycore architecture.
In particular, for dataflow applications that have significant amount
of core-to-core (or tile-to-tile) communication, the tiles must be
connected with a proper infrastructure that supports tile-to-tile
communication. The analysis step can provide configuration infor-
mation to be used in this step such as communication buffer sizes,
number of cores and memory requirements.

3 PRELIMINARY RESULTS
We have generated tiles using the proposed method. Our design
choices are as follows: CAL actor language [4] for application de-
velopment, TURNUS framework [3] for analyzing the application,
Cal2Many framework [5] for generating hardware/software co-
design, RISC-V [9] cores (rocket core) as the base core, Chisel [2]
as the hardware description language, C as the native language for
RISC-V core, rocket chip generator [1] for integrating the accelera-
tor to the core and generating a single tile.

Cal2Many framework had support for generating different soft-
ware designs targeting different platforms. We added the support
for generating hardware design to achieve co-design of hardware
and software. This extension takes CAL application and generates
hardware code (in Chisel) for the hot-spot software code (in C) for
the rest of the application.

We have targeted two applications namely QR decomposition,
that is usually used for avoiding matrix inversions typically in base-
band processing, and Autofocus criterion calculation which is used
in radar signal processing. The applications are implemented in
CAL, analyzed via TURNUS and hot-spots are identified. Hardware
code in Chisel is generated to execute the hot-spots and the rest
of the applications are converted to C with custom instructions
that can be compiled with the native compiler for rocket core. As
a reference point for comparison, we have implemented the accel-
erators manually as well. The applications are executed 3-4 times
faster with the accelerators while the performance degradation
is between 0 and 4 % when the accelerator is generated instead
of being manually implemented. Generated accelerators use ap-
proximately 0 to 10% more resources while achieving almost the
same clock frequency when compared to manually implemented
accelerators.

4 CONCLUSIONS
We proposed a method to design domain-specific manycore archi-
tectures and realized all the steps of the methodology except the
last one which is integration of tiles to form a manycore. Our results
show that with task specific extensions the cores can achieve 3-4x
higher performance. The automatic generation of these extensions

facilitates development of the tiles and manycores while achieving
competitive performance and resource usage results.

REFERENCES
[1] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-

colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-
vitz, et al. 2016. The Rocket Chip Generator. (2016).

[2] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,
Rimas Avižienis, John Wawrzynek, and Krste Asanović. 2012. Chisel: constructing
hardware in a scala embedded language. In Proceedings of the 49th Annual Design
Automation Conference. ACM, 1216–1225.

[3] Simone Casale-Brunet, M Wiszniewska, Endri Bezati, Marco Mattavelli, Jörn W
Janneck, and Massimo Canale. 2014. Turnus: An open-source design space ex-
ploration framework for dynamic stream programs. In Conference on Design and
Architectures for Signal and Image Processing (DASIP). IEEE, 1–2.

[4] Johan Eker and Jorn W. Janneck. 2012. Dataflow programming in CAL – balancing
expressiveness, analyzability, and implementability. In Conference Record of the
Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR),
2012. IEEE, 1120–1124.

[5] Essayas Gebrewahid, Mingkun Yang, Gustav Cedersjo, Zain Ul-Abdin, Veronica
Gaspes, Jörn W Janneck, and Bertil Svensson. 2014. Realizing efficient execution
of dataflow actors on manycores. In Proceedings of the 12th IEEE International
Conference on Embedded and Ubiquitous Computing (EUC), 2014. IEEE, 321–328.

[6] Jorn W Janneck, Ian D Miller, and Dave B Parlour. 2008. Profiling dataflow
programs. In International Conference on Multimedia and Expo. IEEE, 1065–1068.

[7] Małgorzata Michalska, Jani Boutellier, and Marco Mattavelli. 2015. A methodol-
ogy for profiling and partitioning stream programs on many-core architectures.
Procedia Computer Science 51 (2015), 2962–2966.

[8] Chao Wang, Xi Li, Huizhen Zhang, Aili Wang, and Xuehai Zhou. 2017. Hot spots
profiling and dataflow analysis in custom dataflow computing SoftProcessors.
Journal of Systems and Software 125 (2017), 427–438.

[9] Andrew Waterman, Yunsup Lee, David A Patterson, and Krste Asanovic. 2011.
The risc-v instruction set manual, volume i: Base user-level isa. EECS Department,
UC Berkeley, Tech. Rep. UCB/EECS-2011-62 (2011).


	Abstract
	1 Introduction
	2 Methodology
	3 Preliminary Results
	4 Conclusions
	References

