
Modern scientific collaborations, like the ATLAS experiment at 

CERN, produce large amounts of data that need cataloging to meet 

multiple use cases and search criteria. Challenges arise in indexing 

and collecting billions of events, or particle collisions, from 

hundred of grid sites worldwide. In addition we face challenges in 

the organization of the data storage layer of the catalog, that 

should be capable of handling mixed OLTP (high-volume 

transaction processing updates ) and OLAP (real-time analytical 

queries) use cases. 

 

ABSTRACT 

In order to overcome the challenge on the distributed data 

collection of events, we have designed and implemented a 

distributed producer/consumer architecture, based on an Object 

Store as a shared storage, and with dynamic data selection. 

Producers run at hundreds of grid sites worldwide indexing millions 

of files summing up Petabytes of data, and store a small quantity 

of metadata per event in an ObjectStore. Then a reference to the 

data is sent to a supervisor, that signals consumers to retrieve the 

data at the desired granularity and consolidate at a central 

Hadoop based data backend. 

In the area of the internal organization of the data, we propose an 

architecture based on a NoSQL backend storage, and new data 

schemas to better accommodate related data (reprocessings), 

avoiding duplicate information, and improving navigation. We 

propose applying memory caching techniques to improve access 

times for recent loaded data, which is usually the most accessed 

data by the end-user use cases. 

 

OBJECTIVES 

In order to solve the complexity and scalability problems, we have proposed, designed and implemented a new distributed producer/ 

consumer architecture, based on Object Store (OBS) as a shared storage, and with dynamic data selection [4]. The producer now puts all the 

event index data in a OBS, without dividing the payload in various messages, and when it is done it sends a control and statistic message to a 

supervisor. The supervisor is in charge of selecting the valid produced information and signaling consumers to retrieve the appropriate data 

from the OBS system. This entity also takes into account the possibility of some fraction of the event processing not reaching its final state, 

as it was done with the validator in the Messaging scenario.  

MATERIALS AND METHODS – DISTRIBUTED DATA COLLECTION 

RESULTS 

CONCLUSIONS 

We have presented a new pull-model approach for the distributed 

data collection of the ATLAS EventIndex project, based on an 

Object Store as a shared storage and with dynamic data selection. 

It must be noted two key differences in this new approach. First, 

the entire payload from a given producer can be potentially stored 

within a single object regardless of its size, avoiding complex 

issues like message groups and transactions. This avoids blockings 

due to this matter, and so better workload distribution and 

scalability adding new consumers when necessary. This was not 

effectively possible with the messaging approach and in addition 

this allows us to use different data encodings and compression, 

reducing the amount of conveyed data. Second, the behavioural 

change from a push-model to a pull-model. This model allows to 

use the OBS as a temporary storage, eliminating the need to 

consume duplicated produced data. The reduction of complexity 

and the resource usage, and better performance of the distributed 

data collection, has improved the experience for final users, that 

have seen reduced the Traversal time, or latency, of the datasets 

indexed data. Overall the results show that the new approach can 

efficiently support large-scale data collection for big data 

environments, like the next runs of the ATLAS experiment at CERN.  
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INTRODUCTION 

The ATLAS experiment at CERN [1] is producing, during its Run2 

phase (2015-2018), in the order of 1010 events or particle collisions 

every year. This data is stored and distributedly reprocessed at 

different sites worldwide using grid technologies, to extract higher 

level information and store it in formats more suitable to different 

uses. A catalog of data (all events in all processing stages ) is 

therefore needed to meet use cases like (I) locate Individual 

events (event picking) depending on constraints, (II) make 

consistency checks, including detection of duplicates and overlaps, 

and (III) make analytic studies over large amounts of data. The 

EventIndex project [2, 3] is a metadata catalogue at event level 

which tries to exploit technologies such as Hadoop [6]. A small 

quantity of metadata per event is indexed, including identifiers 

(run/event numbers, trigger stream, luminosity block), the trigger 

pattern that made the event to be recorded, and references 

(pointers) to the events at each processing step in all permanent 

files on storage. We developed a producer/consumer architecture 

for the distributed data collection task of the EventIndex project 

with a messaging implementation [5] as depicted in figure 1, that 

has been indexing petabytes of input data, and has produced 150 

TB of events meta data that are stored at the Hadoop 

infrastructure at CERN. This system, has efficiently handled more 

than 109 messages, but during high production campaings, we 

detected head of line blockings on the messaging broker. Since 

during the following runs starting in 2021 he production rates will 

be increased, we needed to explore other collection mechanisms.  
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During operation we detected head of line blockings on messaging brokers, as can be seen on figure 2 where messages accumulate in the 

backlog. There are periods when one Consumer is not getting any message even there is backlog at the broker, as can be seen in figure 3. In 

that cases even when there are new instances of the consumer launched against the brokers, the consumption rate does not increase. 

Messaging systems are designed to handle a large number of small messages, but our typical payload consists on large data files that have to 

be divided into smaller messages. This segmentation and re-assembly procedure is complex, and it has an effect on the brokers and 

consumers performance, and the scalability of the system.  

Figure 1. Messaging implementation of the data collection architecture 

Figure 2: Head of line blocking detection on brokers  a) Messages received (blue) and forwarded 

to consumers (green) by the brokers. b)Messages stored (not forwarded at a given time) 

Figure 3: Messages consumed along time by  

Consumer 1 (red) and Consumer 2 (green) 

Figure 6 shows the performance obtained with 10 simultaneous producers writing objects of different sizes, starting from 1KB up to 1MB. 

Figure 6 a) shows the system throughput. The throughput achieved is moderate, with a maximum of 150 operations per second obtained with 

1KB objects. Figure 6 b) shows the bandwidth (measured in bytes per second written with different object sizes) in the Y-axis. Figure 6 b) 

shows that the achieved throughput is low with small 1KB objects, but it starts increasing with objects of 100KB, reaching a stable mean of 

about 12 MBytes/s with objects 512KB and up, with peaks up to 16MBytes/s. 

Since the data used for benchmarking the OBS system come a real system in production, we can compare the performance of the messaging 

system shown in Figure 5 to the OBS approach in Figure 10 b). From this comparison, we can state that for small payload sizes the messaging 

system yields a better throughput than the OBS system. However, Figure 10 b) shows that for payload sizes equal or greater than 100KB the 

OBS system yields a better bandwidth than the messaging system, which is true for our typical producer payload in the order of MB. 

In Figure 7 we can see the number of collected events with the new OBS system during 3 months in production, summing up a total of 60 

Billion events indexed, with peaks of 3.5 Billion events per day. The new OBS consumer improved performance an order of magnitude 

compared with the Messaging one, being now capable to absorb these peaks online. The ObjectStore based solution is now the reference 

implementation for the ATLAS EventIndex project, and is being currently used in production since 2018. 

 

 

REMAINING OBJECTIVES 
The second objective of this thesis is to design and implement a 

data storage layer exploring these systems and capable to handle 

OLTP and OLAP mixed workloads, to satisfy the described use 

cases, and which improve the usability and performance. We are 

aiming to avoid duplicate information, and provide a unique and 

coherent dataset for all use cases and workloads 

Now the difference is that this partial data is not being continuously pushed to 

the consumers. When reaching a desired processing granularity (for example 

indexing all the data from a dataset), the supervisor signals the consumer with 

a control message which contains all the info needed to retrieve the data by 

the latter. This allows a consumer to consolidate information in a single step, 

writing a unique file in HDFS filesystem, instead of having multiple files written 

by several consumers like in the messaging scenario. Only valid data is 

retrieved from the OBS and consolidated into bigger, more suitable files in the 

Hadoop HDFS filesystem. It reduces the amount of data that is consumed, and 

so the network usage from the OBS to the final HDFS backend. We can also 

avoid extra and expensive cleaning tasks on the Hadoop cluster. 

 Figure 4. ObjectStore implementation of the data collection architecture 

Figure 5. Messaging performance  Figure 6. Object Store performance Figure 7.0 OBS system performance in collected 

events per day and totals. 
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