
Leveraging Resource Bottleneck Awareness and
Optimizations for Data Analytics Performance

Tiago B. G. Perez
Dept. of Computer Science

University of Colorado
Colorado Springs, USA

Xiaobo Zhou (Advisor)
Dept. of Computer Science

University of Colorado
Colorado Springs, USA

Abstract
Spark is among the most popular parallel and distributed
data analytics frameworks in use today. But just like its
peers and predecessors, it still suffers from performance degra-
dation caused by resource bottlenecks. The challenge is find-
ing multiple methods that leverage awareness of resource
bottlenecks to improve performance.

Among the research progress we have made so far, in-
cludes the proposal and development of two systems. The
first, PETS, is a tuning system that is capable of tuning mul-
tiple parameters at the same time in a few iterations, taking
advantage of a resource awareness feedback system. The sec-
ond, MRD, is a cache memory management system which
utilizes reference-distance information, to evict the furthest
and least likely data in the cache to be used, while aggres-
sively prefetching the nearest and most likely data that will
be needed.

Both systems have shown promising results, with signifi-
cant performance gains over default systems, as well as im-
provements in related recent work.

1. MOTIVATION
Spark [9] is among the most popular parallel and dis-

tributed data analytics frameworks in use today. But just
like its peers and predecessors [2], it still suffers from per-
formance degradation caused by resource bottlenecks. De-
tecting and identifying a bottleneck is already hard for a
single system that is composed of multiple resources (e.g.
CPU, memory, etc.), the problem is made even harder as it
scales and deals with the intricacies of large parallel and dis-
tributed systems. Finding simple ways of detecting, identi-
fying and mitigating these bottlenecks is an important step
in improving the performance issue faced by these frame-
works.

The goal is to find multiple methods, such as: tuning,
memory management, performance modeling and task schedul-
ing; that encompass the measurement, analysis, identifica-
tion, and mitigation of multiple resource bottlenecks in a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ICPP ’18, August 13 - 16 2018, Eugene, OR, USA
Copyright 2014 ACM 978-1-4503-2785-5/14/12 ...$15.00.

parallel and distributed system. Leveraging the awareness
of resource bottlenecks with the addition of optimizations
in various system parameters and resource management, to
improve the performance and counter bottlenecks that may
occur in a single or multiple nodes of a multi-node cluster.
Combining both offline and online methods to optimize and
improve system performance.

2. BOTTLENECK AWARENESS AND OP-
TIMIZATIONS

Among the research progress we have made so far, includes
the proposal and development of two systems. The first, a
tuning system called PETS, which stands for Parameter En-
semble Table for Spark, was motivated from the challenges
and time consuming effort of tuning Spark with its dozens
of parameters that impact performance. Since current tech-
niques rely on trial-and-guess or the use of scarce expert
knowledge that few posses, and most previous tuning works
for other frameworks are not to adaptable to Spark [3, 4],
this posed as an opportunity to close a gap in this research
field. Also, previous works [1, 5] ignored the issue of re-
source bottlenecks, and did not take advantage of a resource
awareness feedback system to the tuning process. PETS
allowed us have significant performance gains by adjusting
multiple parameters at the same time, in just a few itera-
tions. A simplified view of the architecture can be seen in
Figure 1. Evaluation from our implementation resulted in
promising results, which maintain significant speedups with
fast convergence speeds across multiple types of workloads,
data size and clusters. A summary of our results can be seen
in Figure 2.

Secondly, a cache memory management system called MRD,
which stands for Most Reference Distance, was motivated
from Spark‘s usage of the popular Least Recently Used (LRU)
policy, which however is oblivious to the data dependency
information available in the application’s directed acyclic
graph (DAG [6]). Recent research [8, 7] have made great
strides in exploiting this information, but opportunities to
further extend its usage exist. MRD utilizes reference-distance
information, defined as the distance between the current
stage in the workflow and the usage of the data, to evict
the furthest and least likely data in the cache to be used,
while aggressively prefetching the nearest and most likely
data that will be needed. A simplified view of the architec-
ture can be seen in Figure 3. Results are very promising and
showed significant improvements in performance and cache
hit ratio over the standard LRU policy and recent DAG-
aware research alternatives. A summary of our results can

be seen in Figure 4.

Figure 1: PETS system architecture.

(a) Homogeneous cluster.

(b) Heterogeneous cluster 1.

(c) Heterogeneous cluster 2.

Figure 2: PETS result summary.

3. CONCLUSION
With the development of PETS and MRD, multiple as-

pects of bottlenecks have been addressed, while obtaining
performance gains. Yet, there are currently many gaps which
call for further research, such as developing a reliable bot-
tleneck performance modeling and scheduling system, which
is a direction for future work.

Acknowledgement
This research was supported in part by U.S. NSF grant CNS-
1422119 and CAPES scholarship BEX 13424-13-0.

4. REFERENCES
[1] Cheng, D., Rao, J., Guo, Y., and Zhou, X. Improving mapreduce

performance in heterogeneous environments with adaptive task
tuning. In Proc. of ACM Middleware (2014).

Figure 3: MRD system architecture.

Figure 4: MRD result summary.

[2] Hadoop, A. Apache hadoop, 2009. http://hadoop.apache.org/.
[3] Herodotou, H., Lim, H., Luo, G., Borisov, N., Dong, L., Cetin,

F. B., and Babu, S. Starfish: A self-tuning system for big data
analytics. In Proc. of CIDR (2011).

[4] Li, M., Zeng, L., Meng, S., Tan, J., Zhang, L., Butt, A. R., and
Fuller, N. Mronline: Mapreduce online performance tuning. In
Proc. of ACM HPDC (2014).

[5] Liao, G., Datta, K., and Willke, T. L. Gunther: Search-based
auto-tuning of mapreduce. In Proc. of Springer Europar (2013).

[6] Wang, L. Directed acyclic graph. In Encyclopedia of Systems
Biology. Springer, 2013, pp. 574–574.

[7] Xu, L., Li, M., Zhang, L., Butt, A. R., Wang, Y., and Hu, Z. Z.
Memtune: Dynamic memory management for in-memory data
analytic platforms. In In Proc. of IEEE IPDPS (2016).

[8] Yu, Y., Wang, W., Zhang, J., and Letaief, K. B. Lrc:
Dependency-aware cache management for data analytics
clusters. In Proc. of IEEE INFOCOM (2017).

[9] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and
Stoica, I. Spark: Cluster computing with working sets. In Proc.

of USENIX HOTCLOUD (2010).

