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ABSTRACT
Graph traversal is widely involved in lots of realistic scenarios such
as road routing, social network and so on. Unfortunately graph
traversal is quite time-consuming because of terrible spatial locality.
Conventional prefetch technology and parallel framework do not
bring much benefit. Hybrid Memory Cube (HMC) can serve as high
bandwidth main memory as well as providing an enhanced logic
layer with the ability of controlling memory access and processing
in memory (PIM). Armed with the knowledge of graph’s structure,
we propose CGAcc in this paper. By deploying three prefetchers on
the logic layer and making them in a pipeline way, CGAcc achieves
average 2.8X speedup compared with conventional memory system
with stream prefetcher.
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1 INTRODUCTION
Graph traversal is adopted in a wide variety of realistic scenarios,
for example road routing, social relationship network, gene graph
analysis and so on. Because of the terrible spatial locality, graph
traversal is quite time-consuming, especially when the graph con-
tains huge number of vertexes. Conventionally when we try to
accelerate memory-bound workloads, prefetch is an efficient way
to relieve the very high memory transaction latency by learning
the access pattern and keeping a relative high accuracy in pre-
dict and fetch the following possible accessed data. Unfortunately,
graph’s access pattern is data-dependent so that very hard to pre-
dict through a fixed mode. Several classical prefetchers, such as
strider prefetcher, pointer fetcher, are reported inefficient to deal
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Figure 1: CSR graph traversal work flow.

with graph traversal [1] [3]. It is also quite difficult to use parallel
frameworks or devices for accelerating as usually graphs cannot be
obviously parallelly handled [6].

However, thewell-defined structure graph structure leaves chance
for explicit prefetchers. Based on knowing where to locate the data
used in the near future according to the knowledge of the graph
structure rather than access pattern, the only problem is to acceler-
ate this process because direct prefetch is meaningless. In this paper,
we use Micron’s Hybrid Memory Cube (HMC) to implement this
acceleration. HMC serves as high-bandwidth main memory with an
enhanced logic layer which can handle simple atomic commands as
well as memory accesses. We propose CGAcc, a CSR based graph
traversal accelerator on HMC, which deploys three prefetchers
working in a pipeline style cooperatively to reduce large amounts
of transaction latency. Comprehensive evaluations are concluded
to show that CGAcc can achieve average 2.8X speedup.

2 ARCHITECTURE
In the purpose of reducing capacity cost, Compressed row storage
(CSR) [2] is used as a representation for graph. In the presentation
of CSR-based graph, three arrays (vertex, edge, visited) are needed.
It is worth noted that the contents in these arrays are indexes
rather than pointers. Figure 1 shows the work flow of a CSR-based
graph traversal example. The index of a work node leads to the
corresponding two locations (index and index + 1) in vertex array.
These two values which fetched from vertex arrays illustrate the
range that the data should take from edge array. Similarly, the edge
data will also be used as the index for the visited array. Finally, the
visited array will be accessed to determine whether this extended
node has been accessed or not, and if not, this node will be pushed
into the work list as a new node.

The work flow shown in Figure 1 implies the possibility for
pipelining it. As Figure 2 illustrates, CGAcc deploys three prefetch-
ers on the logic layer of HMC. These prefetchers work in a pipeline
style cooperatively. In our mechanism CGAcc acts like a master
rather than a slave, which means what CPU side needs to do is only
send a start request. After the request is accepted by CGAcc, it will
continue fetch data until all nodes are accessed. Simultaneously
when a new node is found, which means the traversal order is
confirmed, the node index will be sent back to CPU side.
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Figure 2: The architecture of HMC and CGAcc.
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Figure 3: Comparison of performance on several synthetic and
real-world workloads.

CGAccmodules overview CGAcc needs the support of several
external modules as following shows.

1) A register (AR, Activation Register) which used as a trigger
to wake CGAcc up. At the very beginning, CPU send an activation
request which includes start node index to AR. CGAcc will access
AR periodically before it is activated. Another register (CR, Con-
tinual Register) is used to store the current maximum start node
index. This register is needed because in the vast majority cases,
the graph can be treated as forest. Thus we set this register to start
a new tree traversal when a tree traversal is completed.

2) On-chip Cache. In purpose of reducing transaction latency, we
also deploy three caches (Call them C1, C2 and C3) on logic layer.
These three caches are used as buffers for vertex, edge and visited
array. On everymemory access operation to different prefetcher, the
corresponding cache will be access first. The data will be directly
fetched if cache-hit happened, otherwise the related prefetcher
will send a memory access to DRAM layer. In our current work,
the caches obey to classical replacement policy. Actually it can be
further optimized by knowing the nodes that will be accessed in
the near future. This will be our future work.

3) Prefetcher group. Consisted of VEP (Vertex Prefetcher), EP (Edge
Prefetcher) and VSP (Visited Prefetcher). VEP receives and uses
new node index to access visited array and according to the result,
fetch vertex data. Except accesses AR at the very beginning, VEP ac-
cesses CR when it is notified that the current tree is processed over.
In other cases, VEP receives request that contains the new node
index from VSP. When vertex data is fetched, VEP will send some
requests to EP. EP is used to fetch edge data. It receives requests
from VEP. After edge data (Extended by the current processing
node) is fetched, EP will send request to VSP. VSP is used to fetch
visited data. It receives request from EP and then it determines
whether this node is new node by simply snooping if there exists a
write access. Write access to visited array means a node that never
be visited is now being visited, which also means that the node
index should be sent to VEP for the following traversal.

3 EVALUATION
We implemented CGAcc in the cycle-accurate CasHMC simula-
tor [4]. We used Intel PIN [5] to collect memory trace that traversal
algorithm generates. This memory traces only contains the key
part of the algorithm which excludes construction and initiation
parts. A conventional memory system with two-level cache and
stream prefetcher is used as baseline.

We use several graph benchmarks for evaluation. These bench-
marks include synthetic and real-world graphs, provided by Graph-
BIG Dataset [7]. Synthetic graphs with flexible vertexes and edges
(1k∼1000k in our experiment) are generated by LDBC-SNB data
generator.

Figure 3 shows the evaluation results of CGAcc compared with
baseline. The left three bars show the results of real-world bench-
marks, and themiddle four bars show the results of synthetic graphs.
We can learn that for all benchmarks, the average speedup can
reach 2.8X. Respectively, for real-world workloads, the average
speedup is 2.84X while the speedup shows as 2.70X for synthetic
workloads, which shows not much difference. We notice that, for
workloads Road and LDBC-1000k which have similar vertex num-
ber, the speedups (2.67X and 1.12X) exist relatively large gap. This
is because the acceleration is strongly related to the structure of
graph. For instance, if the graph is dense enough, P2 may become
the bottleneck for taking too much time fetching edge data.
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